Angelina Lo Giudice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6626586/publications.pdf

Version: 2024-02-01

87 papers 2,408 citations

28 h-index 243625 44 g-index

87 all docs

87 docs citations

87 times ranked

2509 citing authors

#	Article	IF	CITATIONS
1	A First Glimpse on Cold-Adapted PCB-Oxidizing Bacteria in Edmonson Point Lakes (Northern Victoria) Tj ETQq1 1	. 0.784314	rgBT /Ove <mark>rlo</mark>
2	Life from a Snowflake: Diversity and Adaptation of Cold-Loving Bacteria among Ice Crystals. Crystals, 2022, 12, 312.	2.2	1
3	Antarctic Porifera homogenates as a source of enzymes and antibacterial substances: first results. Polar Biology, 2022, 45, 895-907.	1.2	1
4	Benthic Microbial Communities in a Seasonally Ice-Covered Sub-Arctic River (Pasvik River, Norway) Are Shaped by Site-Specific Environmental Conditions. Microorganisms, 2022, 10, 1022.	3.6	0
5	The art of adapting to extreme environments: The model system Pseudoalteromonas. Physics of Life Reviews, 2021, 36, 137-161.	2.8	53
6	Prokaryotic Diversity of the Composting Thermophilic Phase: The Case of Ground Coffee Compost. Microorganisms, 2021, 9, 218.	3.6	17
7	Antibiofilm Activity of Antarctic Sponge-Associated Bacteria against Pseudomonas aeruginosa and Staphylococcus aureus. Journal of Marine Science and Engineering, 2021, 9, 243.	2.6	12
8	Prokaryotic Diversity and Metabolically Active Communities in Brines from Two Perennially Ice-Covered Antarctic Lakes. Astrobiology, 2021, 21, 551-565.	3.0	8
9	First Insights into the Microbiology of Three Antarctic Briny Systems of the Northern Victoria Land. Diversity, 2021, 13, 323.	1.7	5
10	Ice Melt-Induced Variations of Structural and Functional Traits of the Aquatic Microbial Community along an Arctic River (Pasvik River, Norway). Water (Switzerland), 2021, 13, 2297.	2.7	1
11	Native bilge water bacteria as biosurfactant producers and implications in hydrocarbon-enriched wastewater treatment. Journal of Water Process Engineering, 2021, 43, 102271.	5.6	4
12	Isolation and Identification of Bacteria with Surface and Antibacterial Activity from the Gut of Mediterranean Grey Mullets. Microorganisms, 2021, 9, 2555.	3.6	2
13	A Special Issue on Microorganisms from Extreme Environments in Memory of Luigi Michaud (1974–2014). Diversity, 2020, 12, 2.	1.7	3
14	Bacterial Diversity in a Dynamic and Extreme Sub-Arctic Watercourse (Pasvik River, Norwegian Arctic). Water (Switzerland), 2020, 12, 3098.	2.7	9
15	Culture Collections as Hidden Sources of Microbial Biomolecules and Biodiversity. Diversity, 2020, 12, 264.	1.7	6
16	Exploring the Diversity and Metabolic Profiles of Bacterial Communities Associated With Antarctic Sponges (Terra Nova Bay, Ross Sea). Frontiers in Ecology and Evolution, 2020, 8, .	2.2	14
17	The Variety and Inscrutability of Polar Environments as a Resource of Biotechnologically Relevant Molecules. Microorganisms, 2020, 8, 1422.	3.6	9
18	Physiological and Molecular Responses to Main Environmental Stressors of Microalgae and Bacteria in Polar Marine Environments. Microorganisms, 2020, 8, 1957.	3.6	18

#	Article	IF	Citations
19	Effects of Heavy Ion Particle Irradiation on Spore Germination of Bacillus spp. from Extremely Hot and Cold Environments. Life, 2020, 10, 264.	2.4	8
20	Exploring Mediterranean and Arctic Environments as a Novel Source of Bacteria Producing Antibacterial Compounds to be Applied in Aquaculture. Applied Sciences (Switzerland), 2020, 10, 4006.	2.5	6
21	Cultivable Bacterial Communities in Brines from Perennially Ice-Covered and Pristine Antarctic Lakes: Ecological and Biotechnological Implications. Microorganisms, 2020, 8, 819.	3.6	14
22	Peculiarities of extracellular polymeric substances produced by Antarctic bacteria and their possible applications. Applied Microbiology and Biotechnology, 2020, 104, 2923-2934.	3.6	20
23	Microbial Assemblages in Pressurized Antarctic Brine Pockets (Tarn Flat, Northern Victoria Land): A Hotspot of Biodiversity and Activity. Microorganisms, 2019, 7, 333.	3.6	26
24	Bacterial communities versus anthropogenic disturbances in the Antarctic coastal marine environment. Environmental Sustainability, 2019, 2, 297-310.	2.8	23
25	Metal Resistance in Bacteria from Contaminated Arctic Sediment is Driven by Metal Local Inputs. Archives of Environmental Contamination and Toxicology, 2019, 77, 291-307.	4.1	7
26	Prokaryotic Dynamics in the Meromictic Coastal Lake Faro (Sicily, Italy). Diversity, 2019, 11, 37.	1.7	7
27	Isolation, characterization and optimization of EPSs produced by a cold-adapted <i>Marinobacter </i> isolate from Antarctic seawater. Antarctic Science, 2019, 31, 69-79.	0.9	31
28	Heavy metal tolerance and polychlorinated biphenyl oxidation in bacterial communities inhabiting the Pasvik River and the Varanger Fjord area (Arctic Norway). Marine Pollution Bulletin, 2019, 141, 535-549.	5.0	10
29	Antarctic sponges from the Terra Nova Bay (Ross Sea) host a diversified bacterial community. Scientific Reports, 2019, 9, 16135.	3.3	23
30	Effects of a Simulated Acute Oil Spillage on Bacterial Communities from Arctic and Antarctic Marine Sediments. Microorganisms, 2019, 7, 632.	3.6	24
31	Diversity and Ecological Roles of Prokaryotes in the Changing Antarctic Marine Environment. Springer Polar Sciences, 2019, , 109-131.	0.1	4
32	Occurrence of the black yeast Hortaea werneckii in the Mediterranean Sea. Extremophiles, 2019, 23, 9-17.	2.3	17
33	The demosponge <i>Halichondria (Halichondria) panicea</i> (Pallas, 1766) as a novel source of biosurfactantâ€producing bacteria. Journal of Basic Microbiology, 2018, 58, 532-542.	3.3	6
34	Intestinal bacterial flora of Mediterranean gilthead sea bream (Sparus aurataLinnaeus) as a novel source of natural surface active compounds. Aquaculture Research, 2018, 49, 1262-1273.	1.8	12
35	First evidence of quorum sensing activity in bacteria associated with Antarctic sponges. Polar Biology, 2018, 41, 1435-1445.	1.2	22
36	Efficiency in hydrocarbon degradation and biosurfactant production by Joostella sp. A8 when grown in pure culture and consortia. Journal of Environmental Sciences, 2018, 67, 115-126.	6.1	22

#	Article	IF	CITATIONS
37	Production and Biotechnological Potential of Extracellular Polymeric Substances from Sponge-Associated Antarctic Bacteria. Applied and Environmental Microbiology, 2018, 84, .	3.1	101
38	Bacterial community structure along the subtidal sandy sediment belt of a high Arctic fjord (Kongsfjorden, Svalbard Islands). Science of the Total Environment, 2018, 619-620, 203-211.	8.0	28
39	Bacterial isolates from the Arctic region (Pasvik River, Norway): assessment of biofilm production and antibiotic susceptibility profiles. Environmental Science and Pollution Research, 2018, 25, 1089-1102.	5 . 3	17
40	Bacteria Associated with Marine Benthic Invertebrates from Polar Environments: Unexplored Frontiers for Biodiscovery?. Diversity, 2018, 10, 80.	1.7	35
41	Heavy-metal resistant microorganisms in sediments from submarine canyons and the adjacent continental slope in the northeastern Ligurian margin (Western Mediterranean Sea). Progress in Oceanography, 2018, 168, 155-168.	3.2	9
42	Prokaryotic assemblages within permafrost active layer at Edmonson Point (Northern Victoria Land,) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 5
43	Effect of the natural arsenic gradient on the diversity and arsenic resistance of bacterial communities of the sediments of Camarones River (Atacama Desert, Chile). PLoS ONE, 2018, 13, e0195080.	2.5	16
44	Marine Invertebrates: Underexplored Sources of Bacteria Producing Biologically Active Molecules. Diversity, 2018, 10, 52.	1.7	28
45	Extracellular polymeric substances with metal adsorption capacity produced by Pseudoalteromonas sp. MER144 from Antarctic seawater. Environmental Science and Pollution Research, 2018, 25, 4667-4677.	5.3	60
46	Effects of microplastics on trophic parameters, abundance and metabolic activities of seawater and fish gut bacteria in mesocosm conditions. Environmental Science and Pollution Research, 2018, 25, 30067-30083.	5 . 3	35
47	The pangenome of (Antarctic) Pseudoalteromonas bacteria: evolutionary and functional insights. BMC Genomics, 2017, 18, 93.	2.8	46
48	Ecology of cold environments: new insights of bacterial metabolic adaptation through an integrated genomic-phenomic approach. Scientific Reports, 2017, 7, 839.	3.3	65
49	Prokaryotic Abundance and Activity in Permafrost of the Northern Victoria Land and Upper Victoria Valley (Antarctica). Microbial Ecology, 2017, 74, 402-415.	2.8	17
50	Prokaryotic assemblages in the maritime Antarctic Lake Limnopolar (Byers Peninsula, South Shetland) Tj ETQq0 (0	Overlock 10 Tf
51	Enrichment, isolation and biodegradation potential of psychrotolerant polychlorinated-biphenyl degrading bacteria from the Kongsfjorden (Svalbard Islands, High Arctic Norway). Marine Pollution Bulletin, 2017, 114, 849-859.	5.0	36
52	Biosurfactant production by hydrocarbonâ€degrading <i>Brevibacterium</i> and <i>Vibrio</i> isolates from the sea pen <i>Pteroeides spinosum</i> (Ellis, 1764). Journal of Basic Microbiology, 2016, 56, 963-974.	3.3	16
53	Antimicrobial Potential of Cold-Adapted Bacteria and Fungi from Polar Regions. Grand Challenges in Biology and Biotechnology, 2016, , 83-115.	2.4	13

Prokaryotic Community in Lacustrine Sediments of Byers Peninsula (Livingston Island, Maritime) Tj ETQq0 0 0 rgBT $\frac{1}{2.8}$ Qverlock $\frac{10}{25}$ Tf 50 6

4

54

#	Article	IF	CITATIONS
55	Cell size and other phenotypic traits of prokaryotic cells in pelagic areas of the Ross Sea (Antarctica). Hydrobiologia, 2015, 761, 181-194.	2.0	13
56	Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biology, 2015, 38, 1565-1574.	1.2	67
57	Genome-scale phylogenetic and DNA composition analyses of Antarctic Pseudoalteromonas bacteria reveal inconsistencies in current taxonomic affiliation. Hydrobiologia, 2015, 761, 85-95.	2.0	13
58	Antimicrobial activity of Pseudoalteromonas strains isolated from the Ross Sea (Antarctica) versus Cystic Fibrosis opportunistic pathogens. Hydrobiologia, 2015, 761, 443-457.	2.0	17
59	Cold-adapted bacteria from a coastal area of the Ross Sea (Terra Nova Bay, Antarctica): linking microbial ecology to biotechnology. Hydrobiologia, 2015, 761, 417-441.	2.0	22
60	Biosurfactant activity, heavy metal tolerance and characterization of Joostella strain A8 from the Mediterranean polychaete Megalomma claparedei (Gravier, 1906). Ecotoxicology, 2015, 24, 1294-1304.	2.4	14
61	Snow Surface Microbiome on the High Antarctic Plateau (DOME C). PLoS ONE, 2014, 9, e104505.	2.5	45
62	Phenotypic and genomic characterization of the Antarctic bacterium Gillisia sp. CAL575, a producer of antimicrobial compounds. Extremophiles, 2014, 18, 35-49.	2.3	22
63	Genomic analysis of three sponge-associated Arthrobacter Antarctic strains, inhibiting the growth of Burkholderia cepacia complex bacteria by synthesizing volatile organic compounds. Microbiological Research, 2014, 169, 593-601.	5.3	38
64	Influence of salinity and temperature on the activity of biosurfactants by polychaete-associated isolates. Environmental Science and Pollution Research, 2014, 21, 2988-3004.	5.3	21
65	Metal and antibiotic resistance in psychrotrophic bacteria associated with the Antarctic sponge Hemigellius pilosus (Kirkpatrick, 1907). Polar Biology, 2014, 37, 227-235.	1.2	48
66	C/N ratio-induced structural shift of bacterial communities inside lab-scale aquaculture biofilters. Aquacultural Engineering, 2014, 58, 77-87.	3.1	46
67	Draft genomes of three Antarctic Psychrobacter strains producing antimicrobial compounds against Burkholderia cepacia complex, opportunistic human pathogens. Marine Genomics, 2014, 13, 37-38.	1.1	17
68	Characterization of culturable Paenibacillus spp. from the snow surface on the high Antarctic Plateau (DOME C) and their dissemination in the Concordia research station. Extremophiles, 2013, 17, 565-573.	2.3	5
69	Bacteria associated with sabellids (Polychaeta: Annelida) as a novel source of surface active compounds. Marine Pollution Bulletin, 2013, 70, 125-133.	5.0	43
70	Response of bacterial isolates from Antarctic shallow sediments towards heavy metals, antibiotics and polychlorinated biphenyls. Ecotoxicology, 2013, 22, 240-250.	2.4	67
71	Bioactive volatile organic compounds from Antarctic (sponges) bacteria. New Biotechnology, 2013, 30, 824-838.	4.4	62
72	Draft Genome Sequence of the Volatile Organic Compound-Producing Antarctic Bacterium Arthrobacter sp. Strain TB23, Able To Inhibit Cystic Fibrosis Pathogens Belonging to the Burkholderia cepacia Complex. Journal of Bacteriology, 2012, 194, 6334-6335.	2.2	13

#	Article	IF	CITATIONS
73	Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnology Advances, 2012, 30, 272-293.	11.7	112
74	Predominance of <i>Flavobacterium </i> , <i>Pseudomonas </i> , and <i>Polaromonas </i> within the prokaryotic community of freshwater shallow lakes in the northern Victoria Land, East Antarctica. FEMS Microbiology Ecology, 2012, 82, 391-404.	2.7	66
75	Marine Bacterioplankton Diversity and Community Composition in an Antarctic Coastal Environment. Microbial Ecology, 2012, 63, 210-223.	2.8	59
76	Biochemical and microbial features of shallow marine sediments along the Terra Nova Bay (Ross Sea,) Tj ETQq0 0	OrgBT/O	verlock 10 Tf
77	Antagonistic interactions between psychrotrophic cultivable bacteria isolated from Antarctic sponges: a preliminary analysis. Research in Microbiology, 2009, 160, 27-37.	2.1	79
78	Molecular and physiological characterisation of psychrotrophic hydrocarbon-degrading bacteria isolated from Terra Nova Bay (Antarctica). European Journal of Soil Biology, 2007, 43, 368-379.	3.2	37
79	Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. Journal of Basic Microbiology, 2007, 47, 496-505.	3.3	81
80	Bacterium–bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea). FEMS Microbiology Ecology, 2007, 60, 383-396.	2.7	55
81	Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea,) Tj ETQq $1\ 1\ 0$). 7&.0 314 r	g&T/Overloc
82	Diesel oil and PCB-degrading psychrotrophic bacteria isolated from Antarctic seawaters (Terra Nova) Tj ETQq0 0 C	Ͻ rgBT /Ον:	erlock 10 Tf 5
83	The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic marine bacteria during a two-month-long experiment. Marine Pollution Bulletin, 2004, 49, 405-409.	5.0	96
84	Biodiversity of cultivable psychrotrophic marine bacteria isolated from Terra Nova Bay (Ross Sea,) Tj ETQq0 0 0 rg	ʒBŢ.¦Overlα	ock 10 Tf 50 3
85	Diesel oil and PCB-degrading psychrotrophic bacteria isolated from Antarctic seawaters (Terra Nova) Tj ETQq1 1 C	0.784314 1.6	rgBT /Overloc
86	Morphology and LPS content for the estimation of marine bacterioplankton biomass in the Ionian Sea. Scientia Marina, 2004, 68, 23-31.	0.6	26
87	Biosurfactants from Marine Microorganisms. , 0, , .		7