Simona Radutoiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6626163/publications.pdf

Version: 2024-02-01

38 papers 5,435 citations

218677 26 h-index 330143 37 g-index

41 all docs

41 docs citations

41 times ranked

3285 citing authors

#	Article	IF	Citations
1	Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature, 2003, 425, 585-592.	27.8	1,092
2	A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals. Nature, 2003, 425, 637-640.	27.8	896
3	A Gain-of-Function Mutation in a Cytokinin Receptor Triggers Spontaneous Root Nodule Organogenesis. Science, 2007, 315, 104-107.	12.6	502
4	From The Cover: A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 359-364.	7.1	361
5	LysM domains mediate lipochitin–oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO Journal, 2007, 26, 3923-3935.	7.8	346
6	Root nodule symbiosis in <i>Lotus japonicus</i> drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7996-E8005.	7.1	258
7	Autophosphorylation is essential for the <i>inâ€fvivo</i> function of the <i>Lotus japonicus</i> Nod factor receptorâ€f1 and receptorâ€mediated signalling in cooperation with Nod factor receptorâ€f5. Plant Journal, 2011, 65, 404-417.	5.7	165
8	Rearrangement of Actin Cytoskeleton Mediates Invasion of <i>Lotus japonicus </i> Roots by <i>Mesorhizobium loti </i> ÂÂ. Plant Cell, 2009, 21, 267-284.	6.6	149
9	Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nature Communications, 2017, 8, 14534.	12.8	149
10	Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8118-E8127.	7.1	143
11	A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nature Communications, 2019, 10, 5047.	12.8	129
12	Evolution and Regulation of the <i>Lotus japonicus LysM Receptor</i> Gene Family. Molecular Plant-Microbe Interactions, 2010, 23, 510-521.	2.6	117
13	The Pea <i>Sym37</i> Receptor Kinase Gene Controls Infection-Thread Initiation and Nodule Development. Molecular Plant-Microbe Interactions, 2008, 21, 1600-1608.	2.6	102
14	A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria. PLoS Genetics, 2015, 11, e1005280.	3. 5	97
15	Genetics of Symbiosis in Lotus japonicus: Recombinant Inbred Lines, Comparative Genetic Maps, and Map Position of 35 Symbiotic Loci. Molecular Plant-Microbe Interactions, 2006, 19, 80-91.	2.6	94
16	Host preference and invasiveness of commensal bacteria in the Lotus and Arabidopsis root microbiota. Nature Microbiology, 2021, 6, 1150-1162.	13.3	89
17	Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science, 2020, 369, 663-670.	12.6	87
18	Legume LysM receptors mediate symbiotic and pathogenic signalling. Current Opinion in Plant Biology, 2017, 39, 152-158.	7.1	64

#	Article	IF	CITATIONS
19	Nodulation Gene Mutants of <i>Mesorhizobium loti</i> R7A— <i>nodZ</i> and <i>nolL</i> Mutants Have Host-Specific Phenotypes on <i>Lotus</i> spp Molecular Plant-Microbe Interactions, 2009, 22, 1546-1554.	2.6	62
20	Improved Characterization of Nod Factors and Genetically Based Variation in LysM Receptor Domains Identify Amino Acids Expendable for Nod Factor Recognition in <i>Lotus</i> spp Molecular Plant-Microbe Interactions, 2010, 23, 58-66.	2.6	62
21	LORE1, an active low-copy-number TY3-gypsy retrotransposon family in the model legume Lotus japonicus. Plant Journal, 2005, 44, 372-381.	5.7	56
22	Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus. ELife, 2018, 7, .	6.0	51
23	Regulation of Nod factor biosynthesis by alternative NodD proteins at distinct stages of symbiosis provides additional compatibility scrutiny. Environmental Microbiology, 2018, 20, 97-110.	3.8	50
24	$\mbox{\sc i}$ >Lotus japonicus $\mbox{\sc /i}$ > Symbiosis Genes Impact Microbial Interactions between Symbionts and Multikingdom Commensal Communities. MBio, 2019, 10, .	4.1	41
25	Microbial associations enabling nitrogen acquisition in plants. Current Opinion in Microbiology, 2019, 49, 83-89.	5.1	34
26	A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis. ELife, 2018, 7, .	6.0	32
27	A <i>Lotus japonicus</i> cytoplasmic kinase connects Nod factor perception by the NFR5 LysM receptor to nodulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14339-14348.	7.1	28
28	Characterizing standard genetic parts and establishing common principles for engineering legume and cereal roots. Plant Biotechnology Journal, 2019, 17, 2234-2245.	8.3	28
29	LYS12 LysM receptor deceleratesPhytophthora palmivoradisease progression inLotus japonicus. Plant Journal, 2018, 93, 297-310.	5.7	26
30	<i>N</i> â€glycan maturation mutants in <i>Lotus japonicus</i> for basic and applied glycoprotein research. Plant Journal, 2017, 91, 394-407.	5.7	25
31	Kinetic proofreading of lipochitooligosaccharides determines signal activation of symbiotic plant receptors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
32	Dissection of Ramularia Leaf Spot Disease by Integrated Analysis of Barley and Ramularia collo-cygni Transcriptome Responses. Molecular Plant-Microbe Interactions, 2019, 32, 176-193.	2.6	21
33	Understanding Nod factor signalling paves the way for targeted engineering in legumes and non-legumes. Current Opinion in Plant Biology, 2021, 62, 102026.	7.1	15
34	Expression of major photosynthetic and saltâ€resistance genes in invasive reed lineages grown under elevated <scp>CO</scp> ₂ and temperature. Ecology and Evolution, 2014, 4, 4161-4172.	1.9	10
35	A Lotus japonicus E3 ligase interacts with the Nod Factor Receptor 5 and positively regulates nodulation. BMC Plant Biology, 2018, 18, 217.	3.6	9
36	Agrobacterium rhizogenes pRi TL-DNA integration system: a gene vector for Lotus japonicus transformation., 2005,, 285-287.		8

3

#	:	Article	IF	CITATIONS
3'	7	The Lotus japonicus NPF3.1 Is a Nodule-Induced Gene That Plays a Positive Role in Nodule Functioning. Frontiers in Plant Science, 2021, 12, 688187.	3.6	5
3	8	Deciphering Molecular Host-Pathogen Interactions During Ramularia Collo-Cygni Infection on Barley. Frontiers in Plant Science, 2021, 12, 747661.	3.6	4