
Matthias Geissler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6624930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of Polymer Micropillar Arrays as Templates for Solid-Phase Immunoassays. ACS Applied Polymer Materials, 2022, 4, 5287-5297.	4.4	2
2	Automated sample-to-answer centrifugal microfluidic system for rapid molecular diagnostics of SARS-CoV-2. Lab on A Chip, 2022, 22, 3157-3171.	6.0	17
3	Real-time monitoring of bead-based DNA hybridization in a microfluidic system: study of amplicon hybridization behavior on solid supports. Analyst, The, 2021, 146, 4226-4234.	3.5	4
4	Multifunctional magnetic nanoparticle cloud assemblies for <i>in situ</i> capture of bacteria and isolation of microbial DNA. Analyst, The, 2021, 146, 7491-7502.	3.5	5
5	Centrifugal microfluidic lab-on-a-chip system with automated sample lysis, DNA amplification and microarray hybridization for identification of enterohemorrhagic <i>Escherichia coli</i> culture isolates. Analyst, The, 2020, 145, 6831-6845.	3.5	23
6	Buoyancy-driven step emulsification on pneumatic centrifugal microfluidic platforms. Lab on A Chip, 2020, 20, 3091-3095.	6.0	11
7	Detection of renal biomarkers in chronic kidney disease using microfluidics: progress, challenges and opportunities. Biomedical Microdevices, 2020, 22, 29.	2.8	13
8	Polymer Micropillar Arrays for Colorimetric DNA Detection. Analytical Chemistry, 2020, 92, 7738-7745.	6.5	9
9	Methylation Specific Multiplex Droplet PCR using Polymer Droplet Generator Device for Hematological Diagnostics. Journal of Visualized Experiments, 2020, , .	0.3	0
10	Active pumping and control of flows in centrifugal microfluidics. Microfluidics and Nanofluidics, 2019, 23, 1.	2.2	48
11	Extraction of nucleic acids from blood: unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes. Lab on A Chip, 2019, 19, 1941-1952.	6.0	48
12	Evaluating the Use of Edge Detection in Extracting Feature Size from Scanning Electrochemical Microscopy Images. Analytical Chemistry, 2019, 91, 3944-3950.	6.5	13
13	Epigenetic subtyping of white blood cells using a thermoplastic elastomer-based microfluidic emulsification device for multiplexed, methylation-specific digital droplet PCR. Analyst, The, 2019, 144, 6541-6553.	3.5	15
14	Separation and concentration of Phytophthora ramorum sporangia by inertial focusing in curving microfluidic flows. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	15
15	Localized Detection of <scp>d</scp> â€5erine by using an Enzymatic Amperometric Biosensor and Scanning Electrochemical Microscopy. ChemElectroChem, 2017, 4, 920-926.	3.4	20
16	Determination of the Relationship between Expression and Functional Activity of Multidrug Resistance-Associated Protein 1 using Scanning Electrochemical Microscopy. Analytical Chemistry, 2017, 89, 8988-8994.	6.5	17
17	Microfluidic filtration and extraction of pathogens from food samples by hydrodynamic focusing and inertial lateral migration. Biomedical Microdevices, 2015, 17, 17.	2.8	29
18	Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications. Lab on A Chip. 2015, 15, 2400-2411.	6.0	83

MATTHIAS GEISSLER

#	Article	IF	CITATIONS
19	Microfluidic Integration of a Cloth-Based Hybridization Array System (CHAS) for Rapid, Colorimetric Detection of Enterohemorrhagic <i>Escherichia coli</i> (EHEC) Using an Articulated, Centrifugal Platform. Analytical Chemistry, 2015, 87, 10565-10572.	6.5	23
20	Integrated air stream micromixer for performing bioanalytical assays on a plastic chip. Lab on A Chip, 2014, 14, 3750.	6.0	16
21	Portable bead-based fluorescence detection system for multiplex nucleic acid testing: a case study with Bacillus anthracis. Microfluidics and Nanofluidics, 2014, 16, 1075-1087.	2.2	8
22	Assessment of multidrug resistance on cell coculture patterns using scanning electrochemical microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9249-9254.	7.1	76
23	Thermoâ€Active Elastomer Composite for Optical Heating in Microfluidic Systems. Small, 2013, 9, 654-659.	10.0	1
24	Modular Ultrasonic Lysis System for Rapid Nucleic Acid Extraction and Sample Transfer of Bacillus Spores. Journal of Bioterrorism & Biodefense, 2012, 03, .	0.1	3
25	Air stream-mediated vortex agitation of microlitre entities on a fluidic chip. Lab on A Chip, 2011, 11, 1717.	6.0	9
26	Biological Scanning Electrochemical Microscopy and Its Application to Live Cell Studies. Analytical Chemistry, 2011, 83, 1485-1492.	6.5	75
27	3D thermoplastic elastomer microfluidic devices for biological probe immobilization. Lab on A Chip, 2011, 11, 4099.	6.0	37
28	Extraction of nucleic acids from bacterial spores using beadâ€based mechanical lysis on a plastic chip. Engineering in Life Sciences, 2011, 11, 174-181.	3.6	9
29	Prototyping of microfluidic systems using a commercial thermoplastic elastomer. Microfluidics and Nanofluidics, 2011, 11, 235-244.	2.2	44
30	Plastic Substrates for Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2009, 113, 17296-17300.	3.1	42
31	Fabrication of Microfluidic Devices in Thermoplastic Elastomeric Materials for DNA Detection on Thermal Plastic Substrate. Materials Research Society Symposia Proceedings, 2009, 1222, 1.	0.1	0
32	Stretching the Stamp: A Flexible Approach to the Fabrication of Miniaturized DNA Arrays. Small, 2009, 5, 2514-2518.	10.0	10
33	Oxygen Plasma Treatment of Polystyrene and Zeonor: Substrates for Adhesion of Patterned Cells. Langmuir, 2009, 25, 7169-7176.	3.5	56
34	Microfluidic Patterning of Miniaturized DNA Arrays on Plastic Substrates. ACS Applied Materials & Interfaces, 2009, 1, 1387-1395.	8.0	39
35	Multiple Surface Plasmon Resonances and Near-Infrared Field Enhancement of Gold Nanowells. Analytical Chemistry, 2008, 80, 4945-4950.	6.5	43
36	Patterning of Chemical Gradients with Submicrometer Resolution Using Edge-Spreading Lithography. Small, 2006, 2, 760-765.	10.0	27

MATTHIAS GEISSLER

#	Article	IF	CITATIONS
37	Self-assembly of hexadecanethiol molecules on gold from the vapour phase as directed by a two-dimensional array of silica beads. Chemical Physics Letters, 2005, 408, 80-83.	2.6	13
38	Side-by-Side Patterning of Multiple Alkanethiolate Monolayers on Gold by Edge-Spreading Lithography. Angewandte Chemie - International Edition, 2005, 44, 3596-3600.	13.8	48
39	Edge-Spreading Lithography:Â Use of Patterned Photoresist Structures to Direct the Spreading of Alkanethiols on Gold. Nano Letters, 2005, 5, 31-36.	9.1	48
40	Comparative Study of Monolayers Self-Assembled from Alkylisocyanides and Alkanethiols on Polycrystalline Pt Substrates. Langmuir, 2004, 20, 6993-6997.	3.5	23
41	Patterning: Principles and Some New Developments. Advanced Materials, 2004, 16, 1249-1269.	21.0	602
42	Edge Spreading Lithography and Its Application to the Fabrication of Mesoscopic Gold and Silver Rings. Journal of the American Chemical Society, 2004, 126, 10830-10831.	13.7	190
43	Single-Crystal Nanowires of Platinum Can Be Synthesized by Controlling the Reaction Rate of a Polyol Process. Journal of the American Chemical Society, 2004, 126, 10854-10855.	13.7	469
44	Selective wet-etching of microcontact-printed Cu substrates with control over the etch profile. Microelectronic Engineering, 2003, 67-68, 326-332.	2.4	17
45	Fabrication of Metal Nanowires Using Microcontact Printing. Langmuir, 2003, 19, 6301-6311.	3.5	126
46	Electroless Deposition of NiB on 15 Inch Glass Substrates for the Fabrication of Transistor Gates for Liquid Crystal Displays. Langmuir, 2003, 19, 5923-5935.	3.5	38
47	Electroless Deposition of Cu on Glass and Patterning with Microcontact Printing. Langmuir, 2003, 19, 6567-6569.	3.5	54
48	Patterning NiB Electroless Deposited on Glass Using an Electroplated Cu Mask, Microcontact Printing, and Wet Etching. Langmuir, 2003, 19, 5892-5897.	3.5	21
49	Direct Patterning of NiB on Glass Substrates Using Microcontact Printing and Electroless Deposition. Langmuir, 2003, 19, 6283-6296.	3.5	39
50	Microcontact Printing Using Poly(dimethylsiloxane) Stamps Hydrophilized by Poly(ethylene oxide) Silanes. Langmuir, 2003, 19, 8749-8758.	3.5	150
51	Printing Meets Lithography: Soft Approaches to High-Resolution Patterning. Chimia, 2002, 56, 527-542.	0.6	33
52	Positive Microcontact Printing. Journal of the American Chemical Society, 2002, 124, 3834-3835.	13.7	62
53	Self-Assembled Monolayers of Eicosanethiol on Palladium and Their Use in Microcontact Printing. Langmuir, 2002, 18, 2406-2412.	3.5	79
54	Defect-Tolerant and Directional Wet-Etch Systems for Using Monolayers as Resists. Langmuir, 2002, 18, 2374-2377.	3.5	84

MATTHIAS GEISSLER

#	Article	IF	CITATIONS
55	Printing meets lithography: Soft approaches to high-resolution patterning. IBM Journal of Research and Development, 2001, 45, 697-719.	3.1	450
56	Hydrophilic Poly(dimethylsiloxane) Stamps for Microcontact Printing. Advanced Materials, 2001, 13, 1164-1167.	21.0	169
57	Patterned Electroless Deposition of Copper by Microcontact Printing Palladium(II) Complexes on Titanium-Covered Surfaces. Langmuir, 2000, 16, 6367-6373.	3.5	77
58	Microcontact-Printing Chemical Patterns with Flat Stamps. Journal of the American Chemical Society, 2000, 122, 6303-6304.	13.7	88
59	An STM Study of Chemically Deposited Silver Nanoclusters on Mixed Self-Assembled Monolayers. Angewandte Chemie - International Edition, 1998, 37, 3286-3289.	13.8	21
60	Chemical deposition of silver nanoclusters on self-assembled organic monolayers. A strategy to contact individual molecules. Chemical Physics Letters, 1996, 263, 581-584.	2.6	13