
## Julianne I Moses

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6624197/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b. Astrophysical Journal, 2011, 737, 15.                                             | 4.5  | 374       |
| 2  | Photochemistry of Saturn's Atmosphere I. Hydrocarbon Chemistry and Comparisons with ISO Observations. Icarus, 2000, 143, 244-298.                                                        | 2.5  | 274       |
| 3  | COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b.<br>Astrophysical Journal, 2013, 777, 34.                                                        | 4.5  | 223       |
| 4  | CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b. Astrophysical Journal, 2013, 763, 25.                                   | 4.5  | 220       |
| 5  | Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability. Space Science Reviews, 2016, 205, 285-348.                                                                   | 8.1  | 172       |
| 6  | Photochemistry and diffusion in Jupiter's stratosphere: Constraints from ISO observations and comparisons with other giant planets. Journal of Geophysical Research, 2005, 110, n/a-n/a. | 3.3  | 167       |
| 7  | A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nature Astronomy, 2019, 3, 813-821.                                                | 10.1 | 151       |
| 8  | Photochemistry of Saturn's Atmosphere II. Effects of an Influx of External Oxygen. Icarus, 2000, 145, 166-202.                                                                           | 2.5  | 147       |
| 9  | QUENCHING OF CARBON MONOXIDE AND METHANE IN THE ATMOSPHERES OF COOL BROWN DWARFS AND HOT JUPITERS. Astrophysical Journal, 2011, 738, 72.                                                 | 4.5  | 141       |
| 10 | The effects of external material on the chemistry and structure of Saturn's ionosphere. Journal of Geophysical Research, 2000, 105, 7013-7052.                                           | 3.3  | 106       |
| 11 | Volcanically emitted sodium chloride as a source for Io's neutral clouds and plasma torus. Nature, 2003, 421, 45-47.                                                                     | 27.8 | 102       |
| 12 | The Transiting Exoplanet Community Early Release Science Program for <i>JWST</i> . Publications of the Pacific, 2018, 130, 114402.                                                       | 3.1  | 100       |
| 13 | EChO. Experimental Astronomy, 2012, 34, 311-353.                                                                                                                                         | 3.7  | 98        |
| 14 | Photochemistry of a Volcanically Driven Atmosphere on Io: Sulfur and Oxygen Species from a Pele-Type Eruption. Icarus, 2002, 156, 76-106.                                                | 2.5  | 96        |
| 15 | Haze production rates in super-Earth and mini-Neptune atmosphere experiments. Nature Astronomy, 2018, 2, 303-306.                                                                        | 10.1 | 93        |
| 16 | The Origin of Water Vapor and Carbon Dioxide in Jupiter's Stratosphere. Icarus, 2002, 159, 112-131.                                                                                      | 2.5  | 92        |
| 17 | Hydrocarbon nucleation and aerosol formation in Neptune's atmosphere. Icarus, 1992, 99, 318-346.                                                                                         | 2.5  | 91        |
| 18 | PHOTOLYTIC HAZES IN THE ATMOSPHERE OF 51 ERI B. Astrophysical Journal, 2016, 824, 137.                                                                                                   | 4.5  | 91        |

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Chemical kinetics on extrasolar planets. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130073.                                                  | 3.4 | 86        |
| 20 | Dust ablation on the giant planets: Consequences for stratospheric photochemistry. Icarus, 2017, 297, 33-58.                                                                                          | 2.5 | 82        |
| 21 | The deep water abundance on Jupiter: New constraints from thermochemical kinetics and diffusion modeling. Icarus, 2010, 209, 602-615.                                                                 | 2.5 | 78        |
| 22 | Cross Sections and Reaction Rates for Comparative Planetary Aeronomy. Space Science Reviews, 2008, 139, 63-105.                                                                                       | 8.1 | 74        |
| 23 | External Sources of Water for Mercury's Putative Ice Deposits. Icarus, 1999, 137, 197-221.                                                                                                            | 2.5 | 69        |
| 24 | Meteoroid ablation in Neptune's atmosphere. Icarus, 1992, 99, 368-383.                                                                                                                                | 2.5 | 60        |
| 25 | ON THE COMPOSITION OF YOUNG, DIRECTLY IMAGED GIANT PLANETS. Astrophysical Journal, 2016, 829, 66.                                                                                                     | 4.5 | 59        |
| 26 | Photochemical Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes. Astronomical<br>Journal, 2018, 156, 38.                                                                            | 4.7 | 59        |
| 27 | Alkali and Chlorine Photochemistry in a Volcanically Driven Atmosphere on Io. Icarus, 2002, 156, 107-135.                                                                                             | 2.5 | 57        |
| 28 | TWO NEARBY SUB-EARTH-SIZED EXOPLANET CANDIDATES IN THE GJ 436 SYSTEM. Astrophysical Journal, 2012, 755, 9.                                                                                            | 4.5 | 56        |
| 29 | Mid-infrared spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere. Icarus, 2014, 243, 494-513. | 2.5 | 56        |
| 30 | The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.                                         | 1.7 | 56        |
| 31 | Meridional variations of temperature, C2H2 and C2H6 abundances in Saturn's stratosphere at southern summer solstice. Icarus, 2005, 177, 18-31.                                                        | 2.5 | 53        |
| 32 | Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 2. Determination of the mean composition of the upper troposphere and stratosphere. Icarus, 2014, 243, 471-493.           | 2.5 | 53        |
| 33 | Global Chemistry and Thermal Structure Models for the Hot Jupiter WASP-43b and Predictions for JWST. Astrophysical Journal, 2020, 890, 176.                                                           | 4.5 | 53        |
| 34 | <i>SPITZER</i> SECONDARY ECLIPSE OBSERVATIONS OF FIVE COOL GAS GIANT PLANETS AND EMPIRICAL<br>TRENDS IN COOL PLANET EMISSION SPECTRA. Astrophysical Journal, 2015, 810, 118.                          | 4.5 | 52        |
| 35 | Latitudinal and seasonal models of stratospheric photochemistry on Saturn: Comparison with infrared data from IRTF/TEXES. Journal of Geophysical Research, 2005, 110, .                               | 3.3 | 51        |
| 36 | Hydrogen and deuterium loss from the terrestrial atmosphere: A quantitative assessment of nonthermal escape fluxes. Journal of Geophysical Research, 1989, 94, 14971-14989.                           | 3.3 | 48        |

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Solar System Ionospheres. Space Science Reviews, 2008, 139, 235-265.                                                                                                                  | 8.1  | 48        |
| 38 | Laboratory Simulations of Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes:<br>Particle Color and Size Distribution. Astrophysical Journal Letters, 2018, 856, L3. | 8.3  | 48        |
| 39 | Post-SL9 sulfur photochemistry on Jupiter. Geophysical Research Letters, 1995, 22, 1597-1600.                                                                                         | 4.0  | 45        |
| 40 | Phase transformations and the spectral reflectance of solid sulfur: Can metastable sulfur allotropes exist on Io?. Icarus, 1991, 89, 277-304.                                         | 2.5  | 44        |
| 41 | An Analysis of Neptune's Stratospheric Haze Using High-Phase-Angle Voyager Images. Icarus, 1995, 113, 232-266.                                                                        | 2.5  | 41        |
| 42 | A spatially resolved high spectral resolution study of Neptune's stratosphere. Icarus, 2011, 214,<br>606-621.                                                                         | 2.5  | 41        |
| 43 | General circulation and transport in Saturn's upper troposphere and stratosphere. Icarus, 2012, 218,<br>861-875.                                                                      | 2.5  | 41        |
| 44 | Seasonal stratospheric photochemistry on Uranus and Neptune. Icarus, 2018, 307, 124-145.                                                                                              | 2.5  | 40        |
| 45 | Gas Phase Chemistry of Cool Exoplanet Atmospheres: Insight from Laboratory Simulations. ACS Earth and Space Chemistry, 2019, 3, 39-50.                                                | 2.7  | 38        |
| 46 | Seasonal variations of temperature, acetylene and ethane in Saturn's atmosphere from 2005 to 2010, as observed by Cassini-CIRS. Icarus, 2013, 225, 257-271.                           | 2.5  | 36        |
| 47 | Meridional distribution of CH3C2H and C4H2 in Saturn's stratosphere from CIRS/Cassini limb and nadir observations. Icarus, 2010, 209, 682-695.                                        | 2.5  | 35        |
| 48 | The first detection of propane on Saturn. Icarus, 2006, 181, 266-271.                                                                                                                 | 2.5  | 34        |
| 49 | Chemistry of Temperate Super-Earth and Mini-Neptune Atmospheric Hazes from Laboratory<br>Experiments. Planetary Science Journal, 2020, 1, 17.                                         | 3.6  | 34        |
| 50 | Haze Formation in Warm H <sub>2</sub> -rich Exoplanet Atmospheres. Planetary Science Journal, 2020,<br>1, 51.                                                                         | 3.6  | 34        |
| 51 | Sulfur-driven haze formation in warm CO2-rich exoplanet atmospheres. Nature Astronomy, 2020, 4, 986-993.                                                                              | 10.1 | 33        |
| 52 | On the abundance of non-cometary HCN on Jupiter. Faraday Discussions, 2010, 147, 103.                                                                                                 | 3.2  | 31        |
| 53 | The EChO science case. Experimental Astronomy, 2015, 40, 329-391.                                                                                                                     | 3.7  | 31        |
| 54 | How to Identify Exoplanet Surfaces Using Atmospheric Trace Species in Hydrogen-dominated<br>Atmospheres. Astrophysical Journal, 2021, 914, 38.                                        | 4.5  | 30        |

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Giant Planet Observations with the <i>James Webb Space Telescope</i> . Publications of the Astronomical Society of the Pacific, 2016, 128, 018005.                              | 3.1  | 29        |
| 56 | The detection of benzene in Saturn's upper atmosphere. Geophysical Research Letters, 2016, 43, 7895-7901.                                                                       | 4.0  | 29        |
| 57 | Hydrocarbon ions in the lower ionosphere of Saturn. Journal of Geophysical Research: Space Physics, 2014, 119, 384-395.                                                         | 2.4  | 29        |
| 58 | Nitrogen and oxygen photochemistry following SL9. Geophysical Research Letters, 1995, 22, 1601-1604.                                                                            | 4.0  | 28        |
| 59 | Neutral Atmospheres. Space Science Reviews, 2008, 139, 191-234.                                                                                                                 | 8.1  | 27        |
| 60 | Haze evolution in temperate exoplanet atmospheres through surface energy measurements. Nature<br>Astronomy, 2021, 5, 822-831.                                                   | 10.1 | 27        |
| 61 | New constraints on the CH <sub>4</sub> vertical profile in Uranus and Neptune<br>from <i>Herschel</i> observations. Astronomy and Astrophysics, 2015, 579, A121.                | 5.1  | 27        |
| 62 | Chemical variation with altitude and longitude on exo-Neptunes: Predictions for Ariel phase-curve observations. Experimental Astronomy, 2022, 53, 279-322.                      | 3.7  | 25        |
| 63 | Upper Atmosphere and Ionosphere of Saturn. , 2009, , 181-201.                                                                                                                   |      | 25        |
| 64 | Transmission Spectroscopy for the Warm Sub-Neptune HD 3167c: Evidence for Molecular Absorption and a Possible High-metallicity Atmosphere. Astronomical Journal, 2021, 161, 18. | 4.7  | 25        |
| 65 | Into the UV: The Atmosphere of the Hot Jupiter HAT-P-41b Revealed. Astrophysical Journal Letters, 2020, 902, L19.                                                               | 8.3  | 25        |
| 66 | Atmospheric chemistry on Uranus and Neptune. Philosophical Transactions Series A, Mathematical,<br>Physical, and Engineering Sciences, 2020, 378, 20190477.                     | 3.4  | 24        |
| 67 | SL9 impact chemistry: Long-term photochemical evolution. , 1996, , 243-268.                                                                                                     |      | 23        |
| 68 | Evolution of stratospheric chemistry in the Saturn storm beacon region. Icarus, 2015, 261, 149-168.                                                                             | 2.5  | 23        |
| 69 | Saturn's upper atmosphere during the Voyager era: Reanalysis and modeling of the UVS occultations.<br>Icarus, 2015, 258, 135-163.                                               | 2.5  | 23        |
| 70 | Saturn: Composition and Chemistry. , 2009, , 83-112.                                                                                                                            |      | 23        |
| 71 | Jupiter's auroral-related stratospheric heating and chemistry I: Analysis of Voyager-IRIS and<br>Cassini-CIRS spectra. Icarus, 2017, 292, 182-207.                              | 2.5  | 22        |
| 72 | Photochemical modeling of CH3abundances in the outer solar system. Journal of Geophysical Research, 2000, 105, 20207-20225.                                                     | 3.3  | 21        |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Jupiter's auroral-related stratospheric heating and chemistry II: Analysis of IRTF-TEXES spectra<br>measured in December 2014. Icarus, 2018, 300, 305-326.                                                                        | 2.5  | 21        |
| 74 | New Horizons Alice ultraviolet observations of a stellar occultation by Jupiter's atmosphere. Icarus, 2010, 208, 293-305.                                                                                                         | 2.5  | 20        |
| 75 | Neptune and Uranus: ice or rock giants?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190489.                                                                              | 3.4  | 20        |
| 76 | Investigating Trends in Atmospheric Compositions of Cool Gas Giant Planets Using Spitzer Secondary<br>Eclipses. Astronomical Journal, 2019, 158, 217.                                                                             | 4.7  | 19        |
| 77 | The three-micron spectral feature of the Saturnian haze: Implications for the haze composition and formation process. Planetary and Space Science, 2012, 65, 122-129.                                                             | 1.7  | 18        |
| 78 | Jupiter's auroral-related stratospheric heating and chemistry III: Abundances of C2H4, CH3C2H, C4H2<br>and C6H6 from Voyager-IRIS and Cassini-CIRS. Icarus, 2019, 328, 176-193.                                                   | 2.5  | 18        |
| 79 | Neptune's carbon monoxide profile and phosphine upper limits from Herschel/SPIRE: Implications for interior structure and formation. Icarus, 2019, 319, 86-98.                                                                    | 2.5  | 18        |
| 80 | A brightening of Jupiter's auroral 7.8-μm CH4 emission during a solar-wind compression. Nature<br>Astronomy, 2019, 3, 607-613.                                                                                                    | 10.1 | 17        |
| 81 | Neptune's visual albedo variations over a solar cycle: A preâ€Voyager look at ionâ€induced nucleatlon and cloud formation in Neptune's troposphere. Geophysical Research Letters, 1989, 16, 1489-1492.                            | 4.0  | 15        |
| 82 | Constraining Exoplanet Metallicities and Aerosols with the Contribution to ARIEL Spectroscopy of Exoplanets (CASE). Publications of the Astronomical Society of the Pacific, 2019, 131, 094401.                                   | 3.1  | 15        |
| 83 | H <sub>2</sub> SO <sub>4</sub> and Organosulfur Compounds in Laboratory Analogue Aerosols of<br>Warm High-metallicity Exoplanet Atmospheres. Planetary Science Journal, 2021, 2, 2.                                               | 3.6  | 14        |
| 84 | CH4 mixing ratios at microbar pressure levels of Jupiter as constrained by 3-micron ISO data. Icarus, 2014, 237, 42-51.                                                                                                           | 2.5  | 13        |
| 85 | Independent evolution of stratospheric temperatures in Jupiter's northern and southern auroral regions from 2014 to 2016. Geophysical Research Letters, 2017, 44, 5345-5354.                                                      | 4.0  | 12        |
| 86 | Meteoric material—an important component of planetary atmospheres. Geophysical Monograph<br>Series, 2002, , 235-244.                                                                                                              | 0.1  | 11        |
| 87 | Modelling H <sub>3</sub> <sup>+</sup> in planetary atmospheres: effects of vertical gradients on observed quantities. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190067. | 3.4  | 10        |
| 88 | Spatial Variations in the Altitude of the CH <sub>4</sub> Homopause at Jupiter's Mid-to-high Latitudes,<br>as Constrained from IRTF-TEXES Spectra. Planetary Science Journal, 2020, 1, 85.                                        | 3.6  | 9         |
| 89 | Subseasonal Variation in Neptune's Mid-infrared Emission. Planetary Science Journal, 2022, 3, 78.                                                                                                                                 | 3.6  | 9         |
| 90 | Observations of upper tropospheric acetylene on Saturn: No apparent correlation with 2000km-sized thunderstorms. Planetary and Space Science, 2012, 65, 21-37.                                                                    | 1.7  | 8         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Vacuum weathering of sulfur: Temperature effects and applications to Io. Geophysical Research Letters, 1988, 15, 697-700.                                                                                                                                                                                                                                         | 4.0  | 7         |
| 92  | Dust ablation during the Shoemaker-Levy 9 impacts. Journal of Geophysical Research, 1997, 102, 21619-21643.                                                                                                                                                                                                                                                       | 3.3  | 7         |
| 93  | Saturn's Seasonally Changing Atmosphere. , 2018, , 251-294.                                                                                                                                                                                                                                                                                                       |      | 6         |
| 94  | Longitudinal variations in the stratosphere of Uranus from the Spitzer infrared spectrometer. Icarus, 2021, 365, 114506.                                                                                                                                                                                                                                          | 2.5  | 6         |
| 95  | The science of EChO. Proceedings of the International Astronomical Union, 2010, 6, 359-370.                                                                                                                                                                                                                                                                       | 0.0  | 5         |
| 96  | SL9 impact chemistry: Long-term photochemical evolution. International Astronomical Union Colloquium, 1996, 156, 243-268.                                                                                                                                                                                                                                         | 0.1  | 4         |
| 97  | Atmospheric implications of the lack of H 3 + detection at Neptune. Philosophical Transactions Series<br>A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20200100.<br>Spatial structure in Neptune's 7.90- <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.4</td><td>4</td></mml:math>                                  | 3.4  | 4         |
| 98  | display="inline" id="d1e792" altimg="si54.svg"> <mml:mi mathvariant="normal">1¼</mml:mi> m<br>stratospheric CH <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e797" altimg="si55.svg"&gt;<mml:msub><mml:mrow<br>/&gt;<mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:mrow<br></mml:msub></mml:math> emission, as measured by | 2.5  | 4         |
| 99  | VIT-VISIP, Icarus, 2020, 345, 113748<br>Quantifying the Impact of Spectral Coverage on the Retrieval of Molecular Abundances from<br>Exoplanet Transmission Spectra. Publications of the Astronomical Society of the Pacific, 2017, 129,<br>104402.                                                                                                               | 3.1  | 4         |
| 100 | Cloudy with a chance of dustballs. Nature, 2014, 505, 31-32.                                                                                                                                                                                                                                                                                                      | 27.8 | 2         |
| 101 | The Diversity of Planetary Atmospheric Chemistry. Space Science Reviews, 2021, 217, 1.                                                                                                                                                                                                                                                                            | 8.1  | 2         |
| 102 | Cross Sections and Reaction Rates for Comparative Planetary Aeronomy. Space Sciences Series of ISSI, 2008, , 63-105.                                                                                                                                                                                                                                              | 0.0  | 2         |
| 103 | Neutral Atmospheres. Space Sciences Series of ISSI, 2008, , 191-234.                                                                                                                                                                                                                                                                                              | 0.0  | 1         |
| 104 | Correction to "Latitudinal and seasonal models of stratospheric photochemistry on Saturn:<br>Comparison with infrared data from IRTF/TEXES― Journal of Geophysical Research, 2006, 111, .                                                                                                                                                                         | 3.3  | 0         |
| 105 | Exoplanetary Atmospheres—Chemistry, Formation Conditions, and Habitability. Space Sciences Series of ISSI, 2016, , 327-390.                                                                                                                                                                                                                                       | 0.0  | Ο         |