Rong-Fu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6622900/publications.pdf

Version: 2024-02-01

45 papers 5,216 citations

34 h-index 243625 44 g-index

45 all docs

45 docs citations

45 times ranked

7752 citing authors

#	Article	IF	CITATIONS
1	A Phase I Study of Autologous Dendritic Cell Vaccine Pulsed with Allogeneic Stem-like Cell Line Lysate in Patients with Newly Diagnosed or Recurrent Glioblastoma. Clinical Cancer Research, 2022, 28, 689-696.	7.0	38
2	Development of a TCR-like antibody and chimeric antigen receptor against NY-ESO-1/HLA-A2 for cancer immunotherapy., 2022, 10, e004035.		17
3	Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Frontiers in Immunology, 2022, 13, 812774.	4.8	157
4	Activation of cGAS TING by Lethal Malaria N67C Dictates Immunity and Mortality through Induction of CD11b ⁺ Ly6C ^{hi} Proinflammatory Monocytes. Advanced Science, 2022, 9, .	11.2	11
5	Microbiota regulate innate immune signaling and protective immunity against cancer. Cell Host and Microbe, 2021, 29, 959-974.e7.	11.0	67
6	Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice. European Heart Journal, 2021, 42, 4352-4369.	2.2	38
7	Pharmacological inhibition of fatty acid synthesis blocks SARS-CoV-2 replication. Nature Metabolism, 2021, 3, 1466-1475.	11.9	76
8	Molecular characterization of Kita-Kyushu lung cancer antigen (KK-LC-1) expressing carcinomas. Oncotarget, 2021, 12, 2449-2458.	1.8	5
9	RTP4 inhibits IFN-I response and enhances experimental cerebral malaria and neuropathology. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19465-19474.	7.1	31
10	BECN2 (beclin 2)-mediated non-canonical autophagy in innate immune signaling and tumor development. Autophagy, 2020, 16, 2310-2312.	9.1	6
11	Cell-Penetrating Nanoparticles Activate the Inflammasome to Enhance Antibody Production by Targeting Microtubule-Associated Protein 1-Light Chain 3 for Degradation. ACS Nano, 2020, 14, 3703-3717.	14.6	55
12	Evaluation of Single-Cell Cytokine Secretion and Cell-Cell Interactions with a Hierarchical Loading Microwell Chip. Cell Reports, 2020, 31, 107574.	6.4	50
13	Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. Journal of Neuroinflammation, 2019, 16, 53.	7.2	446
14	LRRC25 inhibits type I IFN signaling by targeting ISG15â€associated RIGâ€I for autophagic degradation. EMBO Journal, 2018, 37, 351-366.	7.8	123
15	Immune targets and neoantigens for cancer immunotherapy and precision medicine. Cell Research, 2017, 27, 11-37.	12.0	185
16	FOSL1 Inhibits Type I Interferon Responses to Malaria and Viral Infections by Blocking TBK1 and TRAF3/TRIF Interactions. MBio, 2017, 8, .	4.1	38
17	Assembly of the WHIP-TRIM14-PPP6C Mitochondrial Complex Promotes RIG-I-Mediated Antiviral Signaling. Molecular Cell, 2017, 68, 293-307.e5.	9.7	77
18	Targeting epigenetic regulations in cancer. Acta Biochimica Et Biophysica Sinica, 2016, 48, 97-109.	2.0	60

#	Article	IF	CITATIONS
19	USP38 Inhibits Type I Interferon Signaling by Editing TBK1ÂUbiquitination through NLRP4 Signalosome. Molecular Cell, 2016, 64, 267-281.	9.7	107
20	<scp>USP</scp> 19 modulates autophagy and antiviral immune responses by deubiquitinating Beclinâ€1. EMBO Journal, 2016, 35, 866-880.	7.8	136
21	TRIM11 Suppresses AIM2 Inflammasome by Degrading AIM2 via p62-Dependent Selective Autophagy. Cell Reports, 2016, 16, 1988-2002.	6.4	141
22	TRIM14 Inhibits cGAS Degradation Mediated by Selective Autophagy Receptor p62 to Promote Innate Immune Responses. Molecular Cell, 2016, 64, 105-119.	9.7	277
23	Cross-Regulation of Two Type I Interferon Signaling Pathways in Plasmacytoid Dendritic Cells Controls Anti-malaria Immunity and Host Mortality. Immunity, 2016, 45, 1093-1107.	14.3	100
24	Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells. PLoS ONE, 2015, 10, e0124094.	2.5	9
25	Reversible ubiquitination shapes NLRC5 function and modulates NF-κB activation switch. Journal of Cell Biology, 2015, 211, 1025-1040.	5.2	43
26	Genome-wide Analysis of Host-Plasmodium yoelii Interactions Reveals Regulators of the Type I Interferon Response. Cell Reports, 2015, 12, 661-672.	6.4	21
27	JMJD3 as an epigenetic regulator in development and disease. International Journal of Biochemistry and Cell Biology, 2015, 67, 148-157.	2.8	111
28	USP18 negatively regulates NF-κB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms. Scientific Reports, 2015, 5, 12738.	3.3	86
29	Mechanisms and pathways of innate immune activation and regulation in health and cancer. Human Vaccines and Immunotherapeutics, 2014, 10, 3270-3285.	3.3	246
30	Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E511-20.	7.1	74
31	Current advances in T-cell-based cancer immunotherapy. Immunotherapy, 2014, 6, 1265-1278.	2.0	119
32	Stage-Dependent and Locus-Specific Role of Histone Demethylase Jumonji D3 (JMJD3) in the Embryonic Stages of Lung Development. PLoS Genetics, 2014, 10, e1004524.	3.5	50
33	Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T-cell differentiation. Nature Communications, 2014, 5, 5780.	12.8	136
34	HLA-restricted NY-ESO-1 peptide immunotherapy for metastatic castration resistant prostate cancer. Investigational New Drugs, 2014, 32, 235-242.	2.6	21
35	Jmjd3 Inhibits Reprogramming by Upregulating Expression of INK4a/Arf and Targeting PHF20 for Ubiquitination. Cell, 2013, 152, 1037-1050.	28.9	147
36	Enhanced TLR-induced NF-κB signaling and type I interferon responses in NLRC5 deficient mice. Cell Research, 2012, 22, 822-835.	12.0	110

#	Article	IF	CITATIONS
37	NLRP4 negatively regulates type I interferon signaling by targeting the kinase TBK1 for degradation via the ubiquitin ligase DTX4. Nature Immunology, 2012, 13, 387-395.	14.5	229
38	NLRX1 Negatively Regulates TLR-Induced NF-κB Signaling by Targeting TRAF6 and IKK. Immunity, 2011, 34, 843-853.	14.3	241
39	NLRC5 Negatively Regulates the NF-κB and Type I Interferon Signaling Pathways. Cell, 2010, 141, 483-496.	28.9	365
40	Generation of NY-ESO-1-specific CD4+ and CD8+ T cells by a single peptide with dual MHC class I and class II specificities: a new strategy for vaccine design. Cancer Research, 2002, 62, 3630-5.	0.9	89
41	Identification of CD4+ T Cell Epitopes from NY-ESO-1 Presented by HLA-DR Molecules. Journal of Immunology, 2000, 165, 1153-1159.	0.8	130
42	Identification of a Novel Major Histocompatibility Complex Class II–restricted Tumor Antigen Resulting from a Chromosomal Rearrangement Recognized by CD4+ T Cells. Journal of Experimental Medicine, 1999, 189, 1659-1668.	8.5	126
43	Cancer therapy using a self-replicating RNA vaccine. Nature Medicine, 1999, 5, 823-827.	30.7	311
44	Human tumor antigens for cancer vaccine development. Immunological Reviews, 1999, 170, 85-100.	6.0	268
45	Human tumor antigens recognized by T lymphocytes: implications for cancer therapy. Journal of Leukocyte Biology, 1996, 60, 296-309.	3.3	43