
Didier Gigmes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6622672/publications.pdf Version: 2024-02-01

DIDIED CICMES

#	Article	IF	CITATIONS
1	Enantioselective Radical Reactions Using Chiral Catalysts. Chemical Reviews, 2022, 122, 5842-5976.	47.7	136
2	One‣tep Synthesis of Degradable Vinylic Polymerâ€Based Latexes via Aqueous Radical Emulsion Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
3	Oneâ€Step Synthesis of Degradable Vinylic Polymerâ€Based Latexes via Aqueous Radical Emulsion Polymerization. Angewandte Chemie, 2022, 134, .	2.0	4
4	Thionolactone as a Resin Additive to Prepare (Bio)degradable 3D Objects via VAT Photopolymerization**. Angewandte Chemie, 2022, 134, .	2.0	2
5	Thionolactone as a Resin Additive to Prepare (Bio)degradable 3D Objects via VAT Photopolymerization**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	22
6	Synthesis, optical and electrochemical properties of a series of push-pull dyes based on the 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene)malononitrile (TCF) acceptor. Dyes and Pigments, 2021, 184, 108807.	3.7	23
7	Bis-chalcone derivatives derived from natural products as near-UV/visible light sensitive photoinitiators for 3D/4D printing. Materials Chemistry Frontiers, 2021, 5, 901-916.	5.9	59
8	Precise Alkoxyamine Design to Enable Automated Tandem Mass Spectrometry Sequencing of Digital Poly(phosphodiester)s. Angewandte Chemie, 2021, 133, 930-939.	2.0	2
9	Precise Alkoxyamine Design to Enable Automated Tandem Mass Spectrometry Sequencing of Digital Poly(phosphodiester)s. Angewandte Chemie - International Edition, 2021, 60, 917-926.	13.8	14
10	Synthesis, and the optical and electrochemical properties of a series of push–pull dyes based on the 4-(9-ethyl-9 <i>H</i> -carbazol-3-yl)-4-phenylbuta-1,3-dienyl donor. New Journal of Chemistry, 2021, 45, 5808-5821.	2.8	6
11	D–A dyads and A–D–A triads based on ferrocene: push–pull dyes with unusual behaviours in solution. New Journal of Chemistry, 2021, 45, 13475-13498.	2.8	6
12	Storing the portrait of Antoine de Lavoisier in a single macromolecule. Comptes Rendus Chimie, 2021, 24, 69-76.	0.5	10
13	Triple Stack of a Viologen Derivative in a CB[10] Pair. Organic Letters, 2021, 23, 5283-5287.	4.6	15
14	Dyes with tunable absorption properties from the visible to the near infrared range: 2,4,5,7-Tetranitrofluorene (TNF) as a unique electron acceptor. Dyes and Pigments, 2021, 189, 109250.	3.7	2
15	Photolabile Wellâ€Defined Polystyrene Grafted on Silica Nanoparticle via Nitroxideâ€Mediated Polymerization (NMP). Macromolecular Rapid Communications, 2021, 42, e2100181.	3.9	4
16	Mechanistic Investigation of ε-Thiono-Caprolactone Radical Polymerization: An Interesting Tool to Insert Weak Bonds into Poly(vinyl esters). ACS Applied Polymer Materials, 2021, 3, 3264-3271.	4.4	23
17	Switching from Single to Simultaneous Freeâ€Radical and Anionic Polymerization with Enamineâ€Based Organic Electron Donors. Angewandte Chemie - International Edition, 2021, 60, 19389-19396.	13.8	3
18	Nearâ€infrared light for polymer reâ€shaping and reâ€processing applications. Journal of Polymer Science, 2021, 59, 2193-2200.	3.8	23

#	Article	IF	CITATIONS
19	Switching from Single to Simultaneous Freeâ€Radical and Anionic Polymerization with Enamineâ€Based Organic Electron Donors. Angewandte Chemie, 2021, 133, 19538-19545.	2.0	0
20	Advances in amphiphilic polylactide/vinyl polymer based nano-assemblies for drug delivery. Advances in Colloid and Interface Science, 2021, 294, 102483.	14.7	24
21	Reactive Desorption Electrospray Ionization Mass Spectrometry To Determine Intrinsic Degradability of Poly(lactic-co-glycolic acid) Chains. Analytical Chemistry, 2021, 93, 12041-12048.	6.5	4
22	Synthesis, optical and electrochemical properties of a series of push-pull dyes based on the 4,4-bis(4-methoxy phenyl)butadienyl donor. Dyes and Pigments, 2021, 194, 109552.	3.7	4
23	Poly(ethylene oxide) grafted silica nanoparticles: efficient routes of synthesis with associated colloidal stability. Soft Matter, 2021, 17, 6552-6565.	2.7	6
24	New multifunctional benzophenone-based photoinitiators with high migration stability and their applications in 3D printing. Materials Chemistry Frontiers, 2021, 5, 1982-1994.	5.9	43
25	Substituent effects on the photoinitiation ability of coumarin-based oxime-ester photoinitiators for free radical photopolymerization. Materials Chemistry Frontiers, 2021, 5, 8361-8370.	5.9	42
26	Polylactide-Based Reactive Micelles as a Robust Platform for mRNA Delivery. Pharmaceutical Research, 2020, 37, 30.	3.5	31
27	Freeâ€radical polymerization upon nearâ€infrared light irradiation, merging photochemical and photothermal initiating methods. Journal of Polymer Science, 2020, 58, 300-308.	3.8	30
28	Design of Iodonium Salts for UV or Near-UV LEDs for Photoacid Generator and Polymerization Purposes. Molecules, 2020, 25, 149.	3.8	50
29	New push-pull dyes based on 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile: An amine-directed synthesis. Dyes and Pigments, 2020, 175, 108182.	3.7	16
30	Novel Push–Pull Dyes Derived from 1H-cyclopenta[b]naphthalene-1,3(2H)-dione as Versatile Photoinitiators for Photopolymerization and Their Related Applications: 3D Printing and Fabrication of Photocomposites. Catalysts, 2020, 10, 1196.	3.5	38
31	Novel ketone derivative-based photoinitiating systems for free radical polymerization under mild conditions and 3D printing. Polymer Chemistry, 2020, 11, 5767-5777.	3.9	38
32	DFT-calculation-assisted prediction of the copolymerization between cyclic ketene acetals and traditional vinyl monomers. Polymer Chemistry, 2020, 11, 7159-7169.	3.9	22
33	Ketone derivatives as photoinitiators for both radical and cationic photopolymerizations under visible LED and application in 3D printing. European Polymer Journal, 2020, 132, 109737.	5.4	33
34	Delayed Injection of a Physically Cross-Linked PNIPAAm- <i>g</i> -PEG Hydrogel in Rat Contused Spinal Cord Improves Functional Recovery. ACS Omega, 2020, 5, 10247-10259.	3.5	13
35	New Donor-Acceptor Stenhouse Adducts as Visible and Near Infrared Light Polymerization Photoinitiators. Molecules, 2020, 25, 2317.	3.8	20
36	High-Capacity Digital Polymers: Storing Images in Single Molecules. Macromolecules, 2020, 53, 4022-4029.	4.8	39

#	Article	IF	CITATIONS
37	Polyesters by a Radical Pathway: Rationalization of the Cyclic Ketene Acetal Efficiency. Angewandte Chemie - International Edition, 2020, 59, 14517-14526.	13.8	28
38	Laser Direct Writing of Arbitrary Complex Polymer Microstructures by Nitroxide-Mediated Photopolymerization. ACS Applied Materials & Amp; Interfaces, 2020, 12, 30779-30786.	8.0	13
39	Photoinitiators derived from natural product scaffolds: monochalcones in three-component photoinitiating systems and their applications in 3D printing. Polymer Chemistry, 2020, 11, 4647-4659.	3.9	72
40	Polyesters by a Radical Pathway: Rationalization of the Cyclic Ketene Acetal Efficiency. Angewandte Chemie, 2020, 132, 14625-14634.	2.0	6
41	Monocomponent Photoinitiators based on Benzophenone-Carbazole Structure for LED Photoinitiating Systems and Application on 3D Printing. Polymers, 2020, 12, 1394.	4.5	50
42	Light-Induced Thermal Decomposition of Alkoxyamines upon Infrared CO ₂ Laser: Toward Spatially Controlled Polymerization of Methacrylates in Laser Write Experiments. ACS Omega, 2020, 5, 3043-3046.	3.5	11
43	Mesolytic Versus Homolytic Cleavage in Photochemical Nitroxide-Mediated Polymerization. Macromolecules, 2020, 53, 1567-1572.	4.8	8
44	Inputs of Macromolecular Engineering in the Design of Injectable Hydrogels Based on Synthetic Thermoresponsive Polymers. Macromolecules, 2020, 53, 682-692.	4.8	20
45	Synthesis of polyisoprene, polybutadiene and Styrene Butadiene Rubber grafted silica nanoparticles by nitroxide-mediated polymerization. Polymer, 2020, 190, 122190.	3.8	20
46	Free Radical Photopolymerization and 3D Printing Using Newly Developed Dyes: Indane-1,3-Dione and 1H-Cyclopentanaphthalene-1,3-Dione Derivatives as Photoinitiators in Three-Component Systems. Catalysts, 2020, 10, 463.	3.5	38
47	A Sacrificial PLA Block Mediated Route to Injectable and Degradable PNIPAAm-Based Hydrogels. Polymers, 2020, 12, 925.	4.5	9
48	Selective Bond Cleavage in Informational Poly(Alkoxyamine Phosphodiester)s. Macromolecular Rapid Communications, 2020, 41, e2000215.	3.9	5
49	A Cucurbit[8]uril 2:2 Complex with a Negative p <i>K</i> _a Shift. Chemistry - A European Journal, 2019, 25, 12552-12559.	3.3	22
50	New 1,8-Naphthalimide Derivatives as Photoinitiators for Free-Radical Polymerization Upon Visible Light. Catalysts, 2019, 9, 637.	3.5	41
51	Acyloxyimide derivatives as efficient promoters of polyolefin C–H functionalization: application in the melt grafting of maleic anhydride onto polyethylene. Polymer Chemistry, 2019, 10, 4336-4345.	3.9	8
52	Unprecedented Nucleophilic Attack of Piperidine on the Electron Acceptor during the Synthesis of Pushâ€Pull Dyes by a <i>Knoevenagel</i> Reaction. Helvetica Chimica Acta, 2019, 102, e1900229.	1.6	21
53	Morphologies of Polyisoprene-Grafted Silica Nanoparticles in Model Elastomers. Macromolecules, 2019, 52, 7638-7645.	4.8	19
54	Push-Pull Chromophores Based on the Naphthalene Scaffold: Potential Candidates for Optoelectronic Applications. Materials, 2019, 12, 1342.	2.9	29

#	Article	IF	CITATIONS
55	Redox two-component initiated free radical and cationic polymerizations: Concepts, reactions and applications. Progress in Polymer Science, 2019, 94, 33-56.	24.7	56
56	Functionalization of poly(lactide) with <i>N</i> â€phenyl maleimide using <i>N</i> â€acetoxyâ€phthalimide during reactive extrusion. Journal of Polymer Science Part A, 2019, 57, 917-928.	2.3	3
57	Ferrocene-based (photo)redox polymerization under long wavelengths. Polymer Chemistry, 2019, 10, 1431-1441.	3.9	53
58	Melt radical grafting of diethylmaleate and maleic anhydride onto oligoamide-11 (OA11) and polyamide-11 (PA11) in presence of acyloxyimide derivatives: Toward the compatibilization of PA11/EVOH blends. Materials Today Communications, 2019, 19, 271-276.	1.9	2
59	Recent Advances and Challenges in the Design of Organic Photoacid and Photobase Generators for Polymerizations. Angewandte Chemie - International Edition, 2019, 58, 10410-10422.	13.8	132
60	Chemical modification of poly(lactic acid) induced by thermal decomposition of N â€acetoxyâ€phthalimide during extrusion. Journal of Polymer Science Part A, 2019, 57, 120-129.	2.3	6
61	Ultraâ€Fast Synthesis of Multivalent Radical Nanoparticles by Ringâ€Opening Metathesis Polymerizationâ€Induced Selfâ€Assembly. Angewandte Chemie - International Edition, 2019, 58, 4725-4731.	13.8	57
62	Ultraschnelle Synthese multivalenter radikalischer Nanopartikel durch ringöffnende Metathesepolymerisationsâ€induzierte Selbstorganisation. Angewandte Chemie, 2019, 131, 4775-4781.	2.0	7
63	Degradable and Injectable Hydrogel for Drug Delivery in Soft Tissues. Biomacromolecules, 2019, 20, 149-163.	5.4	85
64	A single-crystal-to-single-crystal transformation affording photochromic 3D MORF crystals. Chemical Communications, 2019, 55, 13824-13827.	4.1	23
65	Copper-Based (Photo)redox Initiating Systems as Highly Efficient Systems for Interpenetrating Polymer Network Preparation. Macromolecules, 2018, 51, 679-688.	4.8	39
66	Light-Sensitive Alkoxyamines as Versatile Spatially- and Temporally- Controlled Precursors of Alkyl Radicals and Nitroxides. Journal of the American Chemical Society, 2018, 140, 3339-3344.	13.7	22
67	<i>N</i> -[2-(Dimethylamino)ethyl]-1,8-naphthalimide derivatives as photoinitiators under LEDs. Polymer Chemistry, 2018, 9, 994-1003.	3.9	69
68	Adduction of ammonium to polylactides to modify their dissociation behavior in collisionâ€induced dissociation. Rapid Communications in Mass Spectrometry, 2018, 32, 423-430.	1.5	4
69	Catalyst―and Initiatorâ€Free Radical Addition under Mild Conditions: A Macromolecular Conjugation Tool. Chemistry - A European Journal, 2018, 24, 3699-3702.	3.3	2
70	Naphthalimideâ€Tertiary Amine Derivatives as Blueâ€Lightâ€Sensitive Photoinitiators. ChemPhotoChem, 2018, 2, 481-489.	3.0	47
71	A pH-driven ring translocation switch against cancer cells. Chemical Communications, 2018, 54, 13825-13828.	4.1	21
72	Preparation of PVDF-grafted-PS involving nitroxides. European Polymer Journal, 2018, 109, 55-63.	5.4	10

#	Article	IF	CITATIONS
73	New Synthetic Route to an Highly Efficient Photoredox Catalyst by Mechanosynthesis. ACS Omega, 2018, 3, 10938-10944.	3.5	17
74	Visible Light Chiral Photoinitiator for Radical Polymerization and Synthesis of Polymeric Films with Strong Chiroptical Activity. Macromolecules, 2018, 51, 5628-5637.	4.8	40
75	Metal Actuated Ring Translocation Switches in Water. Organic Letters, 2018, 20, 3187-3191.	4.6	31
76	Simulation of the Degradation of Cyclic Ketene Acetal and Vinylâ€Based Copolymers Synthesized via a Radical Process: Influence of the Reactivity Ratios on the Degradability Properties. Macromolecular Rapid Communications, 2018, 39, e1800193.	3.9	47
77	Radical Ring-Opening Polymerization: Scope, Limitations, and Application to (Bio)Degradable Materials. Chemical Reviews, 2017, 117, 1319-1406.	47.7	254
78	Improving bioassay sensitivity through immobilization of bio-probes onto reactive micelles. Chemical Communications, 2017, 53, 8062-8065.	4.1	5
79	A comprehensive kinetic study of the conventional free-radical polymerization of seven-membered cyclic ketene acetals. Polymer Chemistry, 2017, 8, 5139-5147.	3.9	30
80	Carbazole Scaffold Based Photoinitiator/Photoredox Catalysts: Toward New High Performance Photoinitiating Systems and Application in LED Projector 3D Printing Resins. Macromolecules, 2017, 50, 2747-2758.	4.8	121
81	Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angewandte Chemie - International Edition, 2017, 56, 16515-16520.	13.8	65
82	Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angewandte Chemie, 2017, 129, 16742-16747.	2.0	15
83	Carbazole Derivatives with Thermally Activated Delayed Fluorescence Property as Photoinitiators/Photoredox Catalysts for LED 3D Printing Technology. Macromolecules, 2017, 50, 4913-4926.	4.8	100
84	Novel Carbazole Skeleton-Based Photoinitiators for LED Polymerization and LED Projector 3D Printing. Molecules, 2017, 22, 2143.	3.8	60
85	Polymerization Initiated by Organic Electron Donors. Angewandte Chemie - International Edition, 2016, 55, 5994-5999.	13.8	25
86	Polymerization Initiated by Organic Electron Donors. Angewandte Chemie, 2016, 128, 6098-6103.	2.0	13
87	Chemoselective Synthesis of Uniform Sequence-Coded Polyurethanes and Their Use as Molecular Tags. CheM, 2016, 1, 114-126.	11.7	108
88	Combined nitroxide mediated radical polymerization techniques for block copolymer synthesis. Tetrahedron, 2016, 72, 7672-7685.	1.9	32
89	New role of aminothiazonaphthalimide derivatives: outstanding photoinitiators for cationic and radical photopolymerizations under visible LEDs. RSC Advances, 2016, 6, 48684-48693.	3.6	25
90	Organic Electronics: An El Dorado in the Quest of New Photocatalysts for Polymerization Reactions. Accounts of Chemical Research, 2016, 49, 1980-1989.	15.6	81

#	Article	IF	CITATIONS
91	Light-active azaphenalene alkoxyamines: fast and efficient mediators of a photo-induced persistent radical effect. RSC Advances, 2016, 6, 80328-80333.	3.6	16
92	Iron complexes as potential photocatalysts for controlled radical photopolymerizations: A tool for modifications and patterning of surfaces. Journal of Polymer Science Part A, 2016, 54, 702-713.	2.3	71
93	Novel naphthalimide–amine based photoinitiators operating under violet and blue LEDs and usable for various polymerization reactions and synthesis of hydrogels. Polymer Chemistry, 2016, 7, 418-429.	3.9	76
94	Specific cationic photoinitiators for near UV and visible LEDs: Iodonium versus ferrocenium structures. Journal of Applied Polymer Science, 2015, 132, .	2.6	81
95	Naphthalimide Derivatives: Substituent Effects on the Photoinitiating Ability in Polymerizations under Near UV, Purple, White and Blue LEDs (385, 395, 405, 455, or 470 nm). Macromolecular Chemistry and Physics, 2015, 216, 1782-1790.	2.2	52
96	Naphthalimideâ€phthalimide derivative based photoinitiating systems for polymerization reactions under blue lights. Journal of Polymer Science Part A, 2015, 53, 665-674.	2.3	55
97	"Reactive nanoprecipitation†a one-step route to functionalized polylactide-based nanoparticles. RSC Advances, 2015, 5, 103060-103063.	3.6	1
98	A benzophenoneâ€naphthalimide derivative as versatile photoinitiator of polymerization under near <scp>UV</scp> and visible lights. Journal of Polymer Science Part A, 2015, 53, 445-451.	2.3	95
99	Solution-processed blue phosphorescent OLEDs with carbazole-based polymeric host materials. Organic Electronics, 2015, 25, 21-30.	2.6	32
100	Effect of nitroxyl-based radicals on the melt radical grafting of maleic anhydride onto polyethylene in presence of a peroxide. European Polymer Journal, 2015, 66, 342-351.	5.4	13
101	Structure Design of Naphthalimide Derivatives: Toward Versatile Photoinitiators for Near-UV/Visible LEDs, 3D Printing, and Water-Soluble Photoinitiating Systems. Macromolecules, 2015, 48, 2054-2063.	4.8	172
102	Iodoniumâ€polyoxometalate and thianthreniumâ€polyoxometalate as new oneâ€component <scp>UV</scp> photoinitiators for radical and cationic polymerization. Journal of Polymer Science Part A, 2015, 53, 981-989.	2.3	32
103	UV-Induced Micropatterning of Complex Functional Surfaces by Photopolymerization Controlled by Alkoxyamines. Langmuir, 2015, 31, 10026-10036.	3.5	27
104	Photoredox catalysis using a new iridium complex as an efficient toolbox for radical, cationic and controlled polymerizations under soft blue to green lights. Polymer Chemistry, 2015, 6, 613-624.	3.9	87
105	Visible light sensitive photoinitiating systems: Recent progress in cationic and radical photopolymerization reactions under soft conditions. Progress in Polymer Science, 2015, 41, 32-66.	24.7	463
106	Novel polymer synthesis methodologies using combinations of thermally- and photochemically-induced nitroxide mediated polymerization. Polymer Chemistry, 2015, 6, 754-763.	3.9	44
107	Preparation and In Vitro Evaluation of Imiquimod Loaded Polylactide-based Micelles as Potential Vaccine Adjuvants. Pharmaceutical Research, 2015, 32, 311-320.	3.5	31
108	Michler's Ketone as an Interesting Scaffold for the Design of Highâ€Performance Dyes in Photoinitiating Systems Upon Visible Light. Macromolecular Chemistry and Physics, 2014, 215, 783-790.	2.2	34

#	Article	IF	CITATIONS
109	Nitroxide Mediated Photopolymerization: A Versatile Tool for the Fabrication of Complex Multilayer Polyfunctional Copolymer Nanostructures. Advanced Materials Interfaces, 2014, 1, 1400067.	3.7	25
110	Structural Effects in the Indanedione Skeleton for the Design of Low Intensity 300–500 nm Light Sensitive Initiators Macromolecules, 2014, 47, 26-34.	4.8	83
111	Green light sensitive diketopyrrolopyrrole derivatives used in versatile photoinitiating systems for photopolymerizations. Polymer Chemistry, 2014, 5, 2293.	3.9	80
112	Julolidine or Fluorenone Based Push–Pull Dyes for Polymerization upon Soft Polychromatic Visible Light or Green Light Macromolecules, 2014, 47, 106-112.	4.8	91
113	Blue Light Sensitive Dyes for Various Photopolymerization Reactions: Naphthalimide and Naphthalic Anhydride Derivatives Macromolecules, 2014, 47, 601-608.	4.8	106
114	End capped polyenic structures as visible light sensitive photoinitiators for polymerization of vinylethers. Dyes and Pigments, 2014, 105, 121-129.	3.7	36
115	Repair of the injured spinal cord by implantation of a synthetic degradable block copolymer in rat. Biomaterials, 2014, 35, 6248-6258.	11.4	34
116	Copper Complexes in Radical Photoinitiating Systems: Applications to Free Radical and Cationic Polymerization upon Visible LEDs. Macromolecules, 2014, 47, 3837-3844.	4.8	150
117	Photoinitiating systems of polymerization and in situ incorporation of metal nanoparticles into polymer matrices upon exposure to visible light: push–pull malonate and malononitrile based dyes. Polymer Chemistry, 2013, 4, 5679.	3.9	55
118	<i>In situ</i> nitroxideâ€mediated polymerization of styrene promoted by the <i>N</i> â€ <i>tert</i> â€butylâ€î±â€isopropylnitrone/bpo pair: ESR investigations. Journal of Polymer Science Part A, 2013, 51, 1786-1795.	2.3	2
119	Scope and limitations of the nitroxide-mediated radical ring-opening polymerization of cyclic ketene acetals. Polymer Chemistry, 2013, 4, 4776.	3.9	38
120	Nitroxide-mediated polymerization. Progress in Polymer Science, 2013, 38, 63-235.	24.7	1,167
121	Naphthalimide based methacrylated photoinitiators in radical and cationic photopolymerization under visible light. Polymer Chemistry, 2013, 4, 5440.	3.9	120
122	Degradable and Comb-Like PEG-Based Copolymers by Nitroxide-Mediated Radical Ring-Opening Polymerization. Biomacromolecules, 2013, 14, 3769-3779.	5.4	87
123	Multicolor Photoinitiators for Radical and Cationic Polymerization: Monofunctional vs Polyfunctional Thiophene Derivatives. Macromolecules, 2013, 46, 6786-6793.	4.8	80
124	Panchromatic Photopolymerizable Cationic Films Using Indoline and Squaraine Dye Based Photoinitiating Systems. ACS Macro Letters, 2013, 2, 736-740.	4.8	81
125	N-Acetoxy-phthalimide (NAPI) as a new H-abstracting agent at high temperature: application to the melt functionalization of polyethylene. Polymer Chemistry, 2013, 4, 2676.	3.9	20
126	A Multicolor Photoinitiator for Cationic Polymerization and Interpenetrated Polymer Network Synthesis: 2,7â€Diâ€ <i>tert</i> â€butyldimethyldihydropyrene. Macromolecular Rapid Communications, 2013, 34, 1104-1109.	3.9	52

#	Article	IF	CITATIONS
127	Push–pull (thio)barbituric acid derivatives in dye photosensitized radical and cationic polymerization reactions under 457/473 nm laser beams or blue LEDs. Polymer Chemistry, 2013, 4, 3866.	3.9	92
128	New Push–Pull Dyes Derived from Michler's Ketone For Polymerization Reactions Upon Visible Lights Macromolecules, 2013, 46, 3761-3770.	4.8	112
129	Blue-to-Red Light Sensitive Push–Pull Structured Photoinitiators: Indanedione Derivatives for Radical and Cationic Photopolymerization Reactions. Macromolecules, 2013, 46, 3332-3341.	4.8	95
130	Redâ€Lightâ€Induced Cationic Photopolymerization: Perylene Derivatives as Efficient Photoinitiators. Macromolecular Rapid Communications, 2013, 34, 1452-1458.	3.9	77
131	Elaboration of Glycopolymer-Functionalized Micelles from an <i>N</i> -Vinylpyrrolidone/Lactide-Based Reactive Copolymer Platform. Macromolecular Bioscience, 2013, 13, 1213-1220.	4.1	24
132	The Use of Poly(N-[2-Hydroxypropyl]-Methacrylamide) Hydrogel to Repair a T10 Spinal Cord Hemisection in Rat: A Behavioural, Electrophysiological and Anatomical Examination. ASN Neuro, 2013, 5, AN20120082.	2.7	37
133	Iridium (III) complexes as promising emitters for solid-state Light-Emitting Electrochemical Cells (LECs). International Journal of Nanotechnology, 2012, 9, 377.	0.2	68
134	Polymer-Grafted Magnetic Nanoparticles in Nanocomposites: Curvature Effects, Conformation of Grafted Chain, and Bimodal Nanotriggering of Filler Organization by Combination of Chain Grafting and Magnetic Field. Macromolecules, 2012, 45, 9220-9231.	4.8	32
135	Intermolecular radical 1,2-addition of the BlocBuilder MA alkoxyamine onto activated olefins: a versatile tool for the synthesis of complex macromolecular architecture. Polymer Chemistry, 2011, 2, 1624.	3.9	32
136	Polymer-Grafted-Nanoparticles Nanocomposites: Dispersion, Grafted Chain Conformation, and Rheological Behavior. Macromolecules, 2011, 44, 122-133.	4.8	292
137	Kinetic subtleties of nitroxide mediated polymerization. Chemical Society Reviews, 2011, 40, 2189.	38.1	161
138	Efficient dual radical/cationic photoinitiator under visible light: a new concept. Polymer Chemistry, 2011, 2, 1986.	3.9	174
139	Elaboration of densely functionalized polylactide nanoparticles from <i>N</i> â€acryloxysuccinimideâ€based block copolymers. Journal of Polymer Science Part A, 2011, 49, 1341-1350.	2.3	22
140	Toward Nitroxide-Mediated Photopolymerization. Macromolecules, 2010, 43, 2204-2212.	4.8	180
141	SG1-Functionalized Peptides as Precursors for Polymerâ`'Peptide Conjugates: A Straightforward Approach. Macromolecules, 2010, 43, 4864-4870.	4.8	40
142	Facile Synthesis of Innocuous Comb-Shaped Polymethacrylates with PEG Side Chains by Nitroxide-Mediated Radical Polymerization in Hydroalcoholic Solutions. Macromolecules, 2010, 43, 9291-9303.	4.8	70
143	Convenient Access to Biocompatible Block Copolymers from SG1-Based Aliphatic Polyester Macro-Alkoxyamines. Biomacromolecules, 2009, 10, 1436-1445.	5.4	39
144	Polystyrene grafting from silica nanoparticles via nitroxide-mediated polymerization (NMP): synthesis and SANS analysis with the contrast variation method. Soft Matter, 2009, 5, 3741.	2.7	78

#	Article	IF	CITATIONS
145	Effect of the Penultimate Unit on the Cĩ£¿ON Bond Homolysis in SG1â€Based Alkoxyamines. Macromolecular Chemistry and Physics, 2008, 209, 220-224.	2.2	35
146	SG1-based alkoxyamine bearing a N-succinimidyl ester: A versatile tool for advanced polymer synthesis. Polymer, 2008, 49, 3639-3647.	3.8	101
147	Intermolecular radical addition of alkoxyamines onto olefins: An easy access to advanced macromolecular architectures precursors. Polymer, 2007, 48, 5219-5225.	3.8	59
148	Nitroxide-Mediated Polymerization:Â The Pivotal Role of thekdValue of the Initiating Alkoxyamine and the Importance of the Experimental Conditions. Macromolecules, 2006, 39, 5238-5250.	4.8	159
149	Polar, Steric, and Stabilization Effects in Alkoxyamines Câ^'ON Bond Homolysis:Â A Multiparameter Analysis. Macromolecules, 2005, 38, 2638-2650.	4.8	148
150	Factors Influencing Câ^'ON Bond Homolysis in Alkoxyamines:Â Unexpected Behavior of SG1 (N-(2-methyl-2-propyl)-N-(1-diethylphosphono-2,2-dimethylpropyl)-N-oxyl)-Based Alkoxyamines. Journal of Organic Chemistry, 2004, 69, 4925-4930.	3.2	51
151	Design and use ofβ-phosphorus nitroxides and alkoxyamines in controlled/"living―free radical polymerizations. Macromolecular Symposia, 2002, 182, 225-247.	0.7	65
152	Nitroxide mediated radical polymerization for the preparation of poly(vinyl chloride) grafted poly(acrylate) copolymers. Polymer Chemistry, 0, , .	3.9	0