Mala K Maini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/662229/publications.pdf

Version: 2024-02-01

125 papers 13,299 citations

²⁶⁶³⁰
56
h-index

109 g-index

134 all docs

134 docs citations

134 times ranked

12788 citing authors

#	Article	IF	CITATIONS
1	The human liver microenvironment shapes the homing and function of CD4 ⁺ T-cell populations. Gut, 2022, 71, 1399-1411.	12.1	19
2	Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature, 2022, 601, 110-117.	27.8	280
3	Immunotherapies for hepatocellular carcinoma. Nature Reviews Clinical Oncology, 2022, 19, 151-172.	27.6	643
4	SARS-CoV-2–specific memory B cells can persist in the elderly who have lost detectable neutralizing antibodies. Journal of Clinical Investigation, 2022, 132, .	8.2	24
5	Heterologous infection and vaccination shapes immunity against SARS-CoV-2 variants. Science, 2022, 375, 183-192.	12.6	91
6	Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma. Nature Communications, 2022, 13, 1372.	12.8	44
7	Rapid synchronous type 1 IFN and virus-specific TÂcell responses characterize first wave non-severe SARS-CoV-2 infections. Cell Reports Medicine, 2022, 3, 100557.	6.5	36
8	Immunological biomarker discovery in cure regimens for chronic hepatitis B virus infection. Journal of Hepatology, 2022, 77, 525-538.	3.7	16
9	HLAâ€DR polymorphism in SARSâ€CoVâ€2 infection and susceptibility to symptomatic COVIDâ€19. Immunology, 2022, 166, 68-77.	4.4	18
10	HIV-1 Vpr drives a tissue residency-like phenotype during selective infection of resting memory TÂcells. Cell Reports, 2022, 39, 110650.	6.4	6
11	NK cells limit therapeutic vaccine–induced CD8 ⁺ T cell immunity in a PD-L1–dependent manner. Science Translational Medicine, 2022, 14, eabi4670.	12.4	19
12	Liver-resident memory T cells: life in lockdown. Seminars in Immunopathology, 2022, 44, 813-825.	6.1	10
13	Isolation of human intrahepatic leukocytes for phenotypic and functional characterization by flow cytometry. STAR Protocols, 2022, 3, 101356.	1.2	2
14	The past, current and future epidemiological dynamic of SARS-CoV-2. Oxford Open Immunology, 2022, 3,	2.8	24
15	Immune boosting by B.1.1.529 $\langle b \rangle (\langle b \rangle)$ Omicron) depends on previous SARS-CoV-2 exposure. Science, 2022, 377, .	12.6	241
16	Viral and immune factors associated with successful treatment withdrawal in HBeAg-negative chronic hepatitis B patients. Journal of Hepatology, 2021, 74, 1064-1074.	3.7	52
17	Human antiviral B cell responses: Emerging lessons from hepatitis B and COVIDâ€19. Immunological Reviews, 2021, 299, 108-117.	6.0	14
18	Time series analysis and mechanistic modelling of heterogeneity and sero-reversion in antibody responses to mild SARS‑CoV-2 infection. EBioMedicine, 2021, 65, 103259.	6.1	61

#	Article	lF	CITATIONS
19	Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science, 2021, 372, 1418-1423.	12.6	286
20	Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and TÂcell metabolic checkpoint. Nature Communications, 2021, 12, 2814.	12.8	54
21	Therapeutic Potential of TLR8 Agonist GSâ€9688 (Selgantolimod) in Chronic Hepatitis B: Remodeling of Antiviral and Regulatory Mediators. Hepatology, 2021, 74, 55-71.	7.3	61
22	Blood transcriptional biomarkers of acute viral infection for detection of pre-symptomatic SARS-CoV-2 infection: a nested, case-control diagnostic accuracy study. Lancet Microbe, The, 2021, 2, e508-e517.	7.3	52
23	The impact of viral mutations on recognition by SARS-CoV-2 specific TÂcells. IScience, 2021, 24, 103353.	4.1	57
24	Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). European Journal of Immunology, 2021, 51, 2708-3145.	2.9	198
25	Heterologous infection and vaccination shapes immunity against SARS-CoV-2 variants. Science, 2021, , eabm $0811.$	12.6	10
26	Guidance for Design and Endpoints of Clinical Trials in Chronic Hepatitis Bâ€"Report From the 2019 EASLâ€AASLD HBV Treatment Endpoints Conference. Hepatology, 2020, 71, 1070-1092.	7. 3	52
27	Guidance for design and endpoints of clinical trials in chronic hepatitis B - Report from the 2019 EASL-AASLD HBV Treatment Endpoints Conference‡. Journal of Hepatology, 2020, 72, 539-557.	3.7	208
28	Cholesterol-modifying drugs in COVID-19. Oxford Open Immunology, 2020, 1, iqaa001.	2.8	27
29	Immuneâ€Mobilizing Monoclonal T Cell Receptors Mediate Specific and Rapid Elimination of Hepatitis B–Infected Cells. Hepatology, 2020, 72, 1528-1540.	7.3	26
30	Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes. Journal of Experimental Medicine, 2020, 217, .	8. 5	72
31	T cells in COVID-19 — united in diversity. Nature Immunology, 2020, 21, 1307-1308.	14.5	59
32	Shared immunotherapeutic approaches in HIV and hepatitis B virus. Current Opinion in HIV and AIDS, 2020, 15, 157-164.	3.8	1
33	CRISPR-Mediated Base Conversion Allows Discriminatory Depletion of Endogenous T Cell Receptors for Enhanced Synthetic Immunity. Molecular Therapy - Methods and Clinical Development, 2020, 19, 149-161.	4.1	14
34	Sestrins induce natural killer function in senescent-like CD8+ T cells. Nature Immunology, 2020, 21, 684-694.	14.5	139
35	Cirrhosis Hampers Early and Rapid Normalization of Natural Killer Cell Phenotype and Function in Hepatitis C Patients Undergoing Interferon-Free Therapy. Frontiers in Immunology, 2020, 11, 129.	4.8	7
36	Liver-resident CD8+ T cells: Learning lessons from the local experts. Journal of Hepatology, 2020, 72, 1049-1051.	3.7	4

3

#	Article	IF	CITATIONS
37	ULBP1 Is Elevated in Human Hepatocellular Carcinoma and Predicts Outcome. Frontiers in Oncology, 2020, 10, 971.	2.8	10
38	Antiretroviral therapy alone versus antiretroviral therapy with a kick and kill approach, on measures of the HIV reservoir in participants with recent HIV infection (the RIVER trial): a phase 2, randomised trial. Lancet, The, 2020, 395, 888-898.	13.7	98
39	Human Liver Memory CD8+ T Cells Use Autophagy for Tissue Residence. Cell Reports, 2020, 30, 687-698.e6.	6.4	53
40	The Design and Development of a Multi-HBV Antigen Encoded in Chimpanzee Adenoviral and Modified Vaccinia Ankara Viral Vectors; A Novel Therapeutic Vaccine Strategy against HBV. Vaccines, 2020, 8, 184.	4.4	21
41	Discordant neutralizing antibody and T cell responses in asymptomatic and mild SARS-CoV-2 infection. Science Immunology, 2020, 5, .	11.9	172
42	FRI-162-Prime-boost vaccination strategies using chimpanzee-adeno and MVA viral vectored vaccines encoding multiple HBV antigens (CPmutS) and class II invariant chain molecular adjuvants induces robust T-cell and anti-HBs antibody response in mice. Journal of Hepatology, 2019, 70, e459-e460.	3.7	2
43	Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 662-675.	17.8	87
44	Oxidative Stress Triggers Selective tRNA Retrograde Transport in Human Cells during the Integrated Stress Response. Cell Reports, 2019, 26, 3416-3428.e5.	6.4	34
45	CD8+ T cells cure without killing. Nature Reviews Immunology, 2019, 19, 201-201.	22.7	2
46	A global scientific strategy to cure hepatitis B. The Lancet Gastroenterology and Hepatology, 2019, 4, 545-558.	8.1	342
47	Hepatitis B assessment without hepatitis B virus DNA quantification: a prospective cohort study in Uganda. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2019, 113, 11-17.	1.8	5
48	Spatiotemporal Differences in Presentation of CD8 T Cell Epitopes during Hepatitis B Virus Infection. Journal of Virology, 2019, 93, .	3.4	25
49	Fine needle aspirates comprehensively sample intrahepatic immunity. Gut, 2019, 68, 1493-1503.	12.1	65
50	Liver sampling: a vital window into HBV pathogenesis on the path to functional cure. Gut, 2018, 67, gutjnl-2017-314873.	12.1	40
51	Defective T-cell immunity in hepatitis B virus infection: why therapeutic vaccination needs a helping hand. The Lancet Gastroenterology and Hepatology, 2018, 3, 192-202.	8.1	75
52	Molecular Recalibration of PD-1+ Antigen-Specific T Cells from Blood and Liver. Molecular Therapy, 2018, 26, 2553-2566.	8.2	20
53	Adaptive Reconfiguration of Natural Killer Cells in HIV-1 Infection. Frontiers in Immunology, 2018, 9, 474.	4.8	64
54	IL-15 Overcomes Hepatocellular Carcinoma-Induced NK Cell Dysfunction. Frontiers in Immunology, 2018, 9, 1009.	4.8	88

#	Article	IF	CITATIONS
55	Circulating and intrahepatic antiviral B cells are defective in hepatitis B. Journal of Clinical Investigation, 2018, 128, 4588-4603.	8.2	208
56	IL-2high tissue-resident T cells in the human liver: Sentinels for hepatotropic infection. Journal of Experimental Medicine, 2017, 214, 1567-1580.	8.5	259
57	Alternative splicing of hepatitis B virus: A novel virus/host interaction altering liver immunity. Journal of Hepatology, 2017, 67, 687-699.	3.7	47
58	T Cells Infiltrating Diseased Liver Express Ligands for the NKG2D Stress Surveillance System. Journal of Immunology, 2017, 198, 1172-1182.	0.8	41
59	Global and immunotherapeutic insights into hepatitis B. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 71-72.	17.8	13
60	Natural Killer Cells in Liver Disease. Seminars in Liver Disease, 2017, 37, 198-209.	3.6	24
61	TRAIL regulatory receptors constrain human hepatic stellate cell apoptosis. Scientific Reports, 2017, 7, 5514.	3.3	14
62	CXCR6 marks a novel subset of T-betloEomeshi natural killer cells residing in human liver. Scientific Reports, 2016, 6, 26157.	3.3	220
63	The role of innate immunity in the immunopathology and treatment of HBV infection. Journal of Hepatology, 2016, 64, S60-S70.	3.7	150
64	Complementary Effects of Interleukin-15 and Alpha Interferon Induce Immunity in Hepatitis B Virus Transgenic Mice. Journal of Virology, 2016, 90, 8563-8574.	3.4	22
65	Distinct Metabolic Requirements of Exhausted and Functional Virus-Specific CD8ÂT Cells in the Same Host. Cell Reports, 2016, 16, 1243-1252.	6.4	176
66	Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. Journal of Immunology, 2016, 197, 4283-4291.	0.8	125
67	Interferon Alpha Induces Sustained Changes in NK Cell Responsiveness to Hepatitis B Viral Load Suppression In Vivo. PLoS Pathogens, 2016, 12, e1005788.	4.7	54
68	Immunity to Oncogenic Viruses. , 2016, , 363-374.		0
69	T cell receptor-therapy in HBV-related hepatocellularcarcinoma. Oncolmmunology, 2015, 4, e1008354.	4.6	34
70	Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. Journal of Hepatology, 2015, 62, 486-491.	3.7	160
71	Reply to: "To target or not to target viral antigens in HBV related HCC?― Journal of Hepatology, 2015, 62, 1450-1452.	3.7	3
72	Optimal management of hepatitis B virus infection – EASL Special Conference. Journal of Hepatology, 2015, 63, 1238-1253.	3.7	91

#	Article	IF	Citations
73	Systemic inflammation and residual viraemia in HIV-positive adults on protease inhibitor monotherapy: a cross-sectional study. BMC Infectious Diseases, 2015, 15, 138.	2.9	13
74	Disease-Promoting Effects of Type I Interferons in Viral, Bacterial, and Coinfections. Journal of Interferon and Cytokine Research, 2015, 35, 252-264.	1.2	154
75	Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nature Medicine, 2015, 21, 591-600.	30.7	226
76	Defective natural killer cell anti-viral capacity in paediatric HBV infection. Clinical and Experimental Immunology, 2015, 179, 466-476.	2.6	16
77	Harnessing alveolar macrophages for sustained mucosal T-cell recall confers long-term protection to mice against lethal influenza challenge without clinical disease. Mucosal Immunology, 2014, 7, 89-100.	6.0	19
78	Direct-acting antivirals trump interferon-alpha in their capacity to rescue exhausted T cells upon HCV clearance. Journal of Hepatology, 2014, 61, 459-461.	3.7	8
79	Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell–mediated deletion. Journal of Experimental Medicine, 2013, 210, 99-114.	8.5	286
80	Differential boosting of innate and adaptive antiviral responses during pegylated-interferon-alpha therapy of chronic hepatitis B. Journal of Hepatology, 2013, 58, 225-233.	3.7	202
81	The Third Signal Cytokine IL-12 Rescues the Anti-Viral Function of Exhausted HBV-Specific CD8 T Cells. PLoS Pathogens, 2013, 9, e1003208.	4.7	176
82	NK Cells: A Double-Edged Sword in Chronic Hepatitis B Virus Infection. Frontiers in Immunology, 2013, 4, 57.	4.8	103
83	Hepatitis B infection: current concepts and future challenges. QJM - Monthly Journal of the Association of Physicians, 2012, 105, 109-113.	0.5	53
84	Pathogenesis of hepatitis B virus infection and potential for new therapies. British Journal of Hospital Medicine (London, England: 2005), 2012, 73, 581-584.	0.5	4
85	Rare inborn errors associated with chronic hepatitis B virus infection*. Hepatology, 2012, 56, 1661-1670.	7.3	30
86	IL-2–Engineered nano-APC Effectively Activates Viral Antigen-Mediated T Cell Responses from Chronic Hepatitis B Virus-Infected Patients. Journal of Immunology, 2012, 188, 1534-1543.	0.8	8
87	IL-10–Producing Regulatory B Cells in the Pathogenesis of Chronic Hepatitis B Virus Infection. Journal of Immunology, 2012, 189, 3925-3935.	0.8	310
88	Platelets harness the immune response to drive liver cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12840-12841.	7.1	25
89	Living in the liver: hepatic infections. Nature Reviews Immunology, 2012, 12, 201-213.	22.7	451
90	Upregulation of the Tim-3/Galectin-9 Pathway of T Cell Exhaustion in Chronic Hepatitis B Virus Infection. PLoS ONE, 2012, 7, e47648.	2.5	235

#	Article	IF	Citations
91	Engineering virus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. Journal of Hepatology, 2011, 55, 103-110.	3.7	183
92	Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatology, 2011, 53, 1494-1503.	7.3	283
93	Licensing Virus-Specific T Cells to Secrete the Neutrophil Attracting Chemokine CXCL-8 during Hepatitis B Virus Infection. PLoS ONE, 2011, 6, e23330.	2.5	15
94	The Host–pathogen Interaction during HBV Infection: Immunological Controversies. Antiviral Therapy, 2010, 15, 15-24.	1.0	96
95	Blockade of Immunosuppressive Cytokines Restores NK Cell Antiviral Function in Chronic Hepatitis B Virus Infection. PLoS Pathogens, 2010, 6, e1001227.	4.7	228
96	Innate and Adaptive Immune Responses in Hepatitis B Virus Infection. Digestive Diseases, 2010, 28, 126-132.	1.9	45
97	The molecular basis of the failed immune response in chronic HBV: Therapeutic implications. Journal of Hepatology, 2010, 52, 616-619.	3.7	115
98	CD4+ T-lymphocyte telomere length is related to fibrosis stage, clinical outcome and treatment response in chronic hepatitis C virus infection. Journal of Hepatology, 2010, 53, 252-260.	3.7	46
99	Temporal Analysis of Early Immune Responses in Patients With Acute Hepatitis B Virus Infection. Gastroenterology, 2009, 137, 1289-1300.	1.3	324
100	Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. Journal of Experimental Medicine, 2008, 205, 2111-2124.	8.5	220
101	Bim-mediated deletion of antigen-specific CD8+ T cells in patients unable to control HBV infection. Journal of Clinical Investigation, 2008, 118, 1835-1845.	8.2	187
102	The Level of Viral Antigen Presented by Hepatocytes Influences CD8 T-Cell Function. Journal of Virology, 2007, 81, 2940-2949.	3.4	80
103	Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell–mediated liver damage. Journal of Experimental Medicine, 2007, 204, 667-680.	8.5	385
104	The Effects of Pathogens on the Immune System: Viral Hepatitis. , 2006, , 233-254.		0
105	The influence of T cell cross-reactivity on HCV-peptide specific human T cell response. Hepatology, 2006, 43, 602-611.	7.3	35
106	HIV-1 Epitope-Specific CD8+ T Cell Responses Strongly Associated with Delayed Disease Progression Cross-Recognize Epitope Variants Efficiently. Journal of Immunology, 2006, 176, 6130-6146.	0.8	97
107	Modulation of the CD8 ⁺ -T-Cell Response by CD4 ⁺ CD4 ⁺ CD4 ⁺ CD4 ⁺ CD4 ⁺ CD4 ⁺ CD4 ^{Fegulatory T Cells in Patients with Hepatitis B Virus Infection.}	3.4	212
108	Effect of HIV Infection and Antiretroviral Therapy on Hepatitis B Virus (HBV)–Specific T Cell Responses in Patients Who Have Resolved HBV Infection. Journal of Infectious Diseases, 2005, 191, 1169-1179.	4.0	43

#	Article	IF	Citations
109	Reconstitution of Hepatitis B Virus (HBV)–Specific T Cell Responses with Treatment of Human Immunodeficiency Virus/HBV Coinfection. Journal of Infectious Diseases, 2003, 188, 1815-1819.	4.0	36
110	Greater CD8+ TCR Heterogeneity and Functional Flexibility in HIV-2 Compared to HIV-1 Infection. Journal of Immunology, 2003, 171, 307-316.	0.8	42
111	Escaping High Viral Load Exhaustion. Journal of Experimental Medicine, 2002, 195, 1089-1101.	8.5	213
112	Regulation of apoptosis and replicative senescence in CD8+ T cells from patients with viral infections. Biochemical Society Transactions, 2000, 28, 255-258.	3.4	8
113	T cell receptor usage of virus-specific CD8 cells and recognition of viral mutations during acute and persistent hepatitis B virus infection. European Journal of Immunology, 2000, 30, 3067-3078.	2.9	45
114	Protection or damage: a dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection?. Current Opinion in Immunology, 2000, 12, 403-408.	5 . 5	100
115	Incubation Phase of Acute Hepatitis B in Man: Dynamic of Cellular Immune Mechanisms. Hepatology, 2000, 32, 1117-1124.	7.3	359
116	Clonal Expansions in Acute EBV Infection Are Detectable in the CD8 and not the CD4 Subset and Persist with a Variable CD45 Phenotype. Journal of Immunology, 2000, 165, 5729-5737.	0.8	110
117	The Role of Virus-Specific Cd8+ Cells in Liver Damage and Viral Control during Persistent Hepatitis B Virus Infection. Journal of Experimental Medicine, 2000, 191, 1269-1280.	8.5	761
118	Protection or damage: a dual role for the virus-specific cytotoxic T lymphocyte response in hepatitis B and C infection?. Current Opinion in Microbiology, 2000, 3, 387-392.	5.1	64
119	Differences in the regulation of CD4 and CD8 T–cell clones during immune responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 401-406.	4.0	19
120	Molecular fingerprinting reveals non-overlapping T cell oligoclonality between an inflamed site and peripheral blood. International Immunology, 1999, 11, 535-543.	4.0	39
121	T-cell clonality in immune responses. Trends in Immunology, 1999, 20, 262-266.	7.5	115
122	Direct ex vivo analysis of hepatitis B virus-specific CD8+ T cells associated with the control of infection. Gastroenterology, 1999, 117, 1386-1396.	1.3	331
123	A comparison of two techniques for the molecular tracking of specific Tâ€cell responses; CD4+human Tâ€cell clones persist in a stable hierarchy but at a lower frequency than clones in the CD8+population. Immunology, 1998, 94, 529-535.	4.4	48
124	Reference ranges and sources of variability of CD4 counts in HIV-seronegative women and men Sexually Transmitted Infections, 1996, 72, 27-31.	1.9	81
125	Liposomal amphotericin B in drug-resistant visceral leishmaniasis. Lancet, The, 1991, 337, 1061-1062.	13.7	191