Karin Hoffmann-Sommergruber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6620879/publications.pdf

Version: 2024-02-01

190 papers 12,675 citations

63 h-index 27406 106 g-index

198 all docs 198
docs citations

198 times ranked

7904 citing authors

#	Article	IF	CITATIONS
1	EAACI Food Allergy and Anaphylaxis Guidelines: diagnosis and management of food allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 1008-1025.	5.7	979
2	EAACI Molecular Allergology User's Guide. Pediatric Allergy and Immunology, 2016, 27, 1-250.	2.6	642
3	Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment. FASEB Journal, 2002, 16, 414-416.	0.5	420
4	The epidemiology of food allergy in Europe: a systematic review and metaâ€analysis. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 62-75.	5.7	407
5	Apple allergy across Europe: How allergen sensitization profiles determine the clinical expression of allergies to plant foods. Journal of Allergy and Clinical Immunology, 2006, 118, 481-488.	2.9	308
6	Dissection of immunoglobulin E and T lymphocyte reactivity of isoforms of the major birch pollen allergen Bet v 1: potential use of hypoallergenic isoforms for immunotherapy Journal of Experimental Medicine, 1996, 183, 599-609.	8.5	289
7	Cloning and Sequencing of Mal d 1, the Major Allergen from Apple (Malus domestica), and Its Immunological Relationship to Bet ν 1, the Major Birch Pollen Allergen. Biochemical and Biophysical Research Communications, 1995, 214, 538-551.	2.1	268
8	Molecular Characterization of Api g 1, the Major Allergen of Celery (<i>Apium graveolens</i>), and Its Immumological and Structural Relationships to a Group of 17â€kDa Tree Pollen Allergens. FEBS Journal, 1995, 233, 484-489.	0.2	212
9	The diagnosis of food allergy: a systematic review and metaâ€analysis. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 76-86.	5.7	192
10	Plant Allergens and Pathogenesis-Related Proteins. International Archives of Allergy and Immunology, 2000, 122, 155-166.	2.1	187
11	Four recombinant isoforms of <i>Cor a</i> I, the major allergen of hazel pollen, show different IgEâ€binding properties. FEBS Journal, 1993, 212, 355-362.	0.2	186
12	Isoforms of Bet ν 1, the Major Birch Pollen Allergen, Analyzed by Liquid Chromatography, Mass Spectrometry, and cDNA Cloning. Journal of Biological Chemistry, 1995, 270, 2607-2613.	3.4	182
13	Pathogenesis-related (PR)-proteins identified as allergens. Biochemical Society Transactions, 2002, 30, 930-935.	3.4	172
14	The prevalence and distribution of food sensitization in European adults. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 365-371.	5.7	172
15	Efficacy of birch-pollen immunotherapy on cross-reactive food allergy confirmed by skin tests and double-blind food challenges. Clinical and Experimental Allergy, 2004, 34, 761-769.	2.9	170
16	Primary prevention of food allergy in children and adults: systematic review. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 581-589.	5.7	168
17	Position paper of the <scp>EAACI</scp> : food allergy due to immunological crossâ€reactions with common inhalant allergens. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1079-1090.	5.7	164
18	Silencing the major apple allergen Mal d $1\mathrm{by}$ using the RNA interference approach. Journal of Allergy and Clinical Immunology, 2005, $115,364-369.$	2.9	160

#	Article	IF	Citations
19	IgEâ€Mediated food allergy diagnosis: Current status and new perspectives. Molecular Nutrition and Food Research, 2007, 51, 135-147.	3.3	155
20	Quantitative IgE inhibition experiments with purified recombinant allergens indicate pollen-derived allergens as the sensitizing agents responsible for many forms of plant food allergy. Journal of Allergy and Clinical Immunology, 2000, 105, 116-125.	2.9	149
21	The promoter of an apple Ypr10 gene, encoding the major allergen Mal d 1, is stress- and pathogen-inducible. Plant Science, 2000, 152, 35-50.	3.6	135
22	Immunology of COVIDâ€19: Mechanisms, clinical outcome, diagnostics, and perspectives—A report of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2445-2476.	5.7	132
23	In vivo assessment with prick-to-prick testing and double-blind, placebo-controlled food challenge of allergenicity of apple cultivars. Journal of Allergy and Clinical Immunology, 2005, 116, 1080-1086.	2.9	130
24	Research needs in allergy: an EAACI position paper, in collaboration with EFA. Clinical and Translational Allergy, 2012, 2, 21.	3.2	127
25	Crossâ€reactive and speciesâ€specific immunoglobulin E epitopes of plant profilins: an experimental and structureâ€based analysis. Clinical and Experimental Allergy, 2006, 36, 920-929.	2.9	114
26	Intranasal corticosteroids in allergic rhinitis in COVIDâ€19 infected patients: An ARIAâ€EAACI statement. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2440-2444.	5.7	114
27	Geographic and temporal variations in pollen exposure across <scp>E</scp> urope. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 913-923.	5.7	109
28	Guidance on allergenicity assessment of genetically modified plants. EFSA Journal, 2017, 15, e04862.	1.8	109
29	Molecular characterization of Dau c 1, the Bet v 1 homologous protein from carrot and its crossâ \in reactivity with Bet v 1 and Api g 1. Clinical and Experimental Allergy, 1999, 29, 840-847.	2.9	108
30	Genomic characterization of members of the Bet ν 1 family: genes coding for allergens and pathogenesis-related proteins share intron positions. Gene, 1997, 197, 91-100.	2.2	107
31	Crossâ€reactive Nâ€glycans of Api g 5, a high molecular weight glycoprotein allergen from celery, are required for immunoglobulin E binding and activation of effector cells from allergic patients. FASEB Journal, 2003, 17, 1697-1699.	0.5	106
32	Effect of Postharvest Storage on the Expression of the Apple Allergen Mal d 1. Journal of Agricultural and Food Chemistry, 2006, 54, 5917-5923.	5.2	105
33	Genomic cloning and linkage mapping of the Mal d 1 (PR-10) gene family in apple (Malus domestica). Theoretical and Applied Genetics, 2005, 111 , $171-183$.	3.6	103
34	EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1429-1444.	5.7	103
35	Purification and characterization of recombinant Bet v I, the major birch pollen allergen. Immunological equivalence to natural Bet v I Journal of Biological Chemistry, 1993, 268, 19574-19580.	3.4	102
36	EAACI position paper on diet diversity in pregnancy, infancy and childhood: Novel concepts and implications for studies in allergy and asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 497-523.	5.7	101

#	Article	IF	Citations
37	lgE sensitization profiles toward green and gold kiwifruits differ among patients allergic to kiwifruit from 3 European countries. Journal of Allergy and Clinical Immunology, 2004, 114, 1169-1175.	2.9	100
38	Are Physicochemical Properties Shaping the Allergenic Potency of Plant Allergens?. Clinical Reviews in Allergy and Immunology, 2022, 62, 37-63.	6.5	99
39	Biochemical Characterization of Pru a 2, a 23-kD Thaumatin-Like Protein Representing a Potential Major Allergen in Cherry (Prunus avium). International Archives of Allergy and Immunology, 1998, 116, 22-28.	2.1	95
40	Component-resolved diagnosis of kiwifruit allergy with purified natural and recombinant kiwifruit allergens. Journal of Allergy and Clinical Immunology, 2010, 125, 687-694.e1.	2.9	95
41	The role of mobile health technologies in allergy care: An EAACI position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 259-272.	5.7	95
42	Hazelnut allergy across Europe dissected molecularly: AÂEuroPrevall outpatient clinic survey. Journal of Allergy and Clinical Immunology, 2015, 136, 382-391.	2.9	92
43	Bet v 1, the major birch pollen allergen, initiates sensitization to Api g 1, the major allergen in celery: evidence at the T cell level. European Journal of Immunology, 2003, 33, 3303-3310.	2.9	90
44	Bet v 1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiologia Plantarum, 1996, 96, 433-438.	5.2	89
45	Hev b 9, an enolase and a new crossâ€reactive allergen from <i>Hevea</i> latex and molds. FEBS Journal, 2000, 267, 7006-7014.	0.2	87
46	Handling of allergen immunotherapy in the COVIDâ€19 pandemic: An ARIAâ€EAACI statement. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1546-1554.	5.7	87
47	Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens?. Clinical Reviews in Allergy and Immunology, 2022, 62, 1-36.	6.5	86
48	IgE cross-reactivity between the major peanut allergen Ara h 2 and the nonhomologous allergens Ara h 1 and Ara h 3. Journal of Allergy and Clinical Immunology, 2013, 132, 118-124.e12.	2.9	85
49	Kiwifruit allergy across Europe: Clinical manifestation and IgE recognition patterns to kiwifruit allergens. Journal of Allergy and Clinical Immunology, 2013, 131, 164-171.	2.9	82
50	The urgent need for a harmonized severity scoring system for acute allergic reactions. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1792-1800.	5.7	79
51	COVIDâ€19 pandemic: Practical considerations on the organization of an allergy clinicâ€"An EAACI/ARIA Position Paper. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 648-676.	5.7	79
52	Purification and characterization of recombinant Bet v I, the major birch pollen allergen. Immunological equivalence to natural Bet v I. Journal of Biological Chemistry, 1993, 268, 19574-80.	3.4	78
53	The Potential ofBetv1Homologues, a Nuclear Multigene Family, as Phylogenetic Markers in Flowering Plants. Molecular Phylogenetics and Evolution, 1997, 8, 317-333.	2.7	77
54	Food allergen protein families and their structural characteristics and application in component-resolved diagnosis: new data from the EuroPrevall project. Analytical and Bioanalytical Chemistry, 2009, 395, 25-35.	3.7	76

#	Article	IF	CITATIONS
55	Acute and long-term management of food allergy: systematic review. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 159-167.	5 . 7	74
56	Tree nut allergens. Molecular Immunology, 2018, 100, 71-81.	2.2	73
57	In vitro Analysis of Birch-Pollen-Associated Food Allergy by Use of Recombinant Allergens in the Basophil Activation Test. International Archives of Allergy and Immunology, 2005, 136, 230-238.	2.1	71
58	EAACI Food Allergy and Anaphylaxis Guidelines. Protecting consumers with food allergies: understanding food consumption, meeting regulations and identifying unmet needs. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 1464-1472.	5.7	71
59	Molecular diagnosis of fruit and vegetable allergy. Current Opinion in Allergy and Clinical Immunology, 2011, 11, 229-235.	2.3	70
60	lgE reactivity to Api g 1, a major celery allergen, in a Central European population is based on primary sensitization by Bet v 1a~†a~†a~†a~ta~ Journal of Allergy and Clinical Immunology, 1999, 104, 478-484.	2.9	69
61	Mutational Analysis of Amino Acid Positions Crucial for IgE-Binding Epitopes of the Major Apple <i>(Malus domestica)</i> Allergen, Mal d 1. International Archives of Allergy and Immunology, 2006, 139, 53-62.	2.1	69
62	High-Level Expression and Purification of the Major Birch Pollen Allergen, Bet ν 1. Protein Expression and Purification, 1997, 9, 33-39.	1.3	67
63	Nonâ€specific lipidâ€transfer proteins: Allergen structure and function, crossâ€reactivity, sensitization, and epidemiology. Clinical and Translational Allergy, 2021, 11, e12010.	3.2	67
64	ARIAâ€EAACI statement on severe allergic reactions to COVIDâ€19 vaccines – An EAACIâ€ARIA Position Paper. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1624-1628.	5.7	66
65	Allergen Chip Diagnosis for Soy-Allergic Patients: Gly m 4 as a Marker for Severe Food-Allergic Reactions to Soy. International Archives of Allergy and Immunology, 2013, 161, 229-233.	2.1	64
66	Cloning and Molecular and Immunological Characterisation of Two New Food Allergens, Cap a 2 and Lyc e 1, Profilins from Bell Pepper <i>(Capsicum annuum)</i> and Tomato <i>(Lycopersicon esculentum)</i> . International Archives of Allergy and Immunology, 2003, 131, 245-255.	2.1	60
67	Dendritic Cells and Their Role in Allergy: Uptake, Proteolytic Processing and Presentation of Allergens. International Journal of Molecular Sciences, 2017, 18, 1491.	4.1	60
68	Componentâ€resolved diagnosis and beyond: Multivariable regression models to predict severity of hazelnut allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 549-559.	5.7	60
69	Naturally occurring hypoallergenic Bet $v\hat{A}1$ isoforms fail to induce IgE responses in individuals with birch pollen allergy. Journal of Allergy and Clinical Immunology, 2008, 121, 246-252.	2.9	58
70	A mutant of the major apple allergen, Mal d 1, demonstrating hypoâ€allergenicity in the target organ by doubleâ€blind placeboâ€controlled food challenge. Clinical and Experimental Allergy, 2005, 35, 1638-1644.	2.9	57
71	Food allergy and atopic dermatitis: Prediction, progression, and prevention. Pediatric Allergy and Immunology, 2017, 28, 831-840.	2.6	57
72	ARIAâ€EAACI statement on asthma and COVIDâ€19 (June 2, 2020). Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 689-697.	5.7	57

#	Article	IF	Citations
73	Linkage map positions and allelic diversity of two MalÂdÂ3 (non-specific lipid transfer protein) genes in the cultivated apple (Malus domestica). Theoretical and Applied Genetics, 2005, 110, 479-491.	3.6	56
74	The performance of a component-based allergen microarray for the diagnosis of kiwifruit allergy. Clinical and Experimental Allergy, 2011, 41, 129-136.	2.9	54
75	Prevalence of IgE-Binding to Art ν 1, Art ν 4 and Amb a 1 in Mugwort-Allergic Patients. International Archives of Allergy and Immunology, 2008, 145, 94-101.	2.1	53
76	Assessment of component-resolved in vitro diagnosis of celeriac allergy. Journal of Allergy and Clinical Immunology, 2009, 124, 1273-1281.e2.	2.9	53
77	Genomic characterization and linkage mapping of the apple allergen genes Mal d 2 (thaumatin-like) Tj ETQq $1\ 1\ 0$).784314 ı	gBT/Overlo
78	2-D Protein Crystals as an Immobilization Matrix for Producing Reaction Zones in Dipstick-Style Immunoassays. BioTechniques, 1996, 21, 918-925.	1.8	48
79	Characterization of Api g 1.0201, a New Member of the Api g 1 Family of Celery Allergens. International Archives of Allergy and Immunology, 2000, 122, 115-123.	2.1	48
80	Measurement of Lipid Transfer Protein in 88 Apple Cultivars. International Archives of Allergy and Immunology, 2008, 146, 19-26.	2.1	47
81	Assessment of allelic diversity in intron-containing Mal d $1\mathrm{genes}$ and their association to apple allergenicity. BMC Plant Biology, 2008, 8, $116.$	3.6	45
82	Diseaseâ€specific healthâ€related quality of life instruments for <scp>I</scp> g <scp>E</scp> â€mediated food allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 834-844.	5.7	44
83	The SAFE project: †plant food allergies: field to table strategies for reducing their incidence in Europe' an ECâ€funded study. Allergy: European Journal of Allergy and Clinical Immunology, 2005, 60, 436-442.	5.7	42
84	Characterization of recombinant Mal d 4 and its application for componentâ€resolved diagnosis of apple allergy. Clinical and Experimental Allergy, 2006, 36, 1087-1096.	2.9	42
85	Current (Food) Allergenic Risk Assessment: Is It Fit for Novel Foods? Status Quo and Identification of Gaps. Molecular Nutrition and Food Research, 2018, 62, 1700278.	3.3	42
86	The diagnosis and management of allergic reactions in patients sensitized to nonâ€specific lipid transfer proteins. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2433-2446.	5.7	42
87	The <scp>E</scp> uro <scp>P</scp> revall outpatient clinic study on food allergy: background and methodology. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 576-584.	5.7	41
88	Patients Allergic to Fish Tolerate Ray Based on the Low Allergenicity of Its Parvalbumin. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 500-508.e11.	3.8	40
89	Allergenicity Assessment of Apple Cultivars: Hurdles in Quantifying Labile Fruit Allergens. International Archives of Allergy and Immunology, 2006, 141, 230-240.	2.1	39
90	A recombinant allergen chimer as novel mucosal vaccine candidate for prevention of multi-sensitivities. Allergy: European Journal of Allergy and Clinical Immunology, 2007, 62, 33-41.	5.7	39

#	Article	IF	Citations
91	Purification and structural stability of the peach allergens $Pru p 1$ and $Pru p 3$. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, S220-9.	3.3	39
92	Cor a 14, the allergenic 2S albumin from hazelnut, is highly thermostable and resistant to gastrointestinal digestion. Molecular Nutrition and Food Research, 2015, 59, 2077-2086.	3.3	39
93	Prioritizing research challenges and funding for allergy and asthma and the need for translational research—The European Strategic Forum on Allergic Diseases. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2064-2076.	5.7	39
94	Detection of allergenâ€specific IgE in tears of grass pollenâ€allergic patients with allergic rhinoconjunctivitis. Clinical and Experimental Allergy, 1996, 26, 79-87.	2.9	36
95	Allergens and their associated small molecule ligands—their dual role in sensitization. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2367-2382.	5.7	36
96	Four Recombinant Isoforms of Cor a 1, the Major Allergen of Hazel Pollen, Show Different Reactivities with Allergen-specific T-lymphocyte Clones. FEBS Journal, 1994, 224, 717-722.	0.2	35
97	Responsiveness of the major birch allergen Bet v 1 scaffold to the gastric environment: Impact on structure and allergenic activity. Molecular Nutrition and Food Research, 2011, 55, 1690-1699.	3.3	35
98	Enhanced Pru p 3 IgE-binding activity by selective free fatty acid-interaction. Journal of Allergy and Clinical Immunology, 2017, 140, 1728-1731.e10.	2.9	35
99	Severe Allergy to Sharon Fruit Caused by Birch Pollen. International Archives of Allergy and Immunology, 2005, 136, 45-52.	2.1	34
100	Allergic sensitization: screening methods. Clinical and Translational Allergy, 2014, 4, 13.	3.2	34
101	Structural and Functional Characterization of the Hazelnut Allergen Cor a 8. Journal of Agricultural and Food Chemistry, 2015, 63, 9150-9158.	5.2	33
102	Homologous tropomyosins from vertebrate and invertebrate: Recombinant calibrator proteins in functional biological assays for tropomyosin allergenicity assessment of novel animal foods. Clinical and Experimental Allergy, 2020, 50, 105-116.	2.9	32
103	Natural and recombinant molecules of the cherry allergen Pru av 2 show diverse structural and B cell characteristics but similar T cell reactivity. Clinical and Experimental Allergy, 2006, 36, 359-368.	2.9	31
104	Differences in the allergenicity of 6 different kiwifruit cultivars analyzed by prick-to-prick testing, open food challenges, and ELISA. Journal of Allergy and Clinical Immunology, 2011, 127, 677-679.e2.	2.9	31
105	Applications of Molecular Diagnostic Testing in Food Allergy. Current Allergy and Asthma Reports, 2015, 15, 56.	5.3	31
106	Assessment of endogenous allergenicity of genetically modified plants exemplified by soybean – Where do we stand?. Food and Chemical Toxicology, 2017, 101, 139-148.	3.6	31
107	Differential T-cell responses and allergen uptake after exposure of dendritic cells to the birch pollen allergens Bet v 1.0101 , Bet v 1.0401 and Bet v 1.1001 . Immunobiology, 2010 , 215 , 903 - 909 .	1.9	28
108	Component-Resolved IgE Profiles in Austrian Patients with a Convincing History of Peanut Allergy. International Archives of Allergy and Immunology, 2015, 166, 13-24.	2.1	28

#	Article	IF	Citations
109	N-terminal sequences of high molecular weight allergens from celery tuber. Clinical and Experimental Allergy, 2000, 30, 566-570.	2.9	27
110	Coordinated and standardized production, purification and characterization of natural and recombinant food allergens to establish a food allergen library. Molecular Nutrition and Food Research, 2008, 52, S159-S165.	3.3	27
111	Impact of lipid binding on the tertiary structure and allergenic potential of Jug r 3, the non-specific lipid transfer protein from walnut. Scientific Reports, 2019, 9, 2007.	3.3	27
112	Lab scale and medium scale production of recombinant allergens in Escherichia coli. Methods, 2004, 32, 219-226.	3.8	26
113	Purification and characterisation of a panel of peanut allergens suitable for use in allergy diagnosis. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, NA-NA.	3.3	26
114	COVIDâ€19 pandemic and allergen immunotherapyâ€"an EAACI survey. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3504-3516.	5.7	26
115	A novel dipstick developed for rapid Bet V 1â€specific IgE detection: recombinant allergen immobilized via a monoclonal antibody to crystalline bacterial cellâ€surface layers. Allergy: European Journal of Allergy and Clinical Immunology, 1998, 53, 786-793.	5.7	25
116	Comparison of natural and recombinant forms of the major fish allergen parvalbumin from cod and carp. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, S196-207.	3.3	25
117	Structure of the major carrot allergen Dauâ€câ€1. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 1206-1212.	2.5	25
118	Bet v 1 and its homologous food allergen Api g 1 stimulate dendritic cells from birch pollenâ \in allergic individuals to induce different Thâ \in cell polarization. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 1388-1396.	5.7	25
119	Jug r 6 is the allergenic vicilin present in walnut responsible for IgE cross-reactivities to other tree nuts and seeds. Scientific Reports, 2018 , 8 , 11366 .	3.3	25
120	The COMPARE Database: A Public Resource for Allergen Identification, Adapted for Continuous Improvement. Frontiers in Allergy, 2021, 2, 700533.	2.8	24
121	Characterization of Bet v 1-related allergens from kiwifruit relevant for patients with combined kiwifruit and birch pollen allergy. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, NA-NA.	3.3	23
122	Peanut lipids display potential adjuvanticity by triggering a proâ€inflammatory response in human keratinocytes. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1746-1749.	5.7	23
123	Inâ€vivo diagnostic test allergens in Europe: A call to action and proposal for recovery planâ€"An EAACI position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2161-2169.	5.7	23
124	Allergen immunotherapy in the current COVID-19 pandemic: A position paper of AeDA, ARIA, EAACI, DGAKI and GPA. Allergologie Select, 2020, 4, 44-52.	3.1	23
125	Pru p 3 as a marker for symptom severity for patients with peach allergy in a birch pollen environment. Journal of Allergy and Clinical Immunology, 2009, 124, 166-167.	2.9	21
126	Understanding the molecular sensitization for <scp>C</scp> ypress pollen and peach in the <scp>L</scp> anguedocâ€ <scp>R</scp> oussillon area. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 249-251.	5.7	21

#	Article	IF	CITATIONS
127	Walnut Allergy Across Europe: Distribution of Allergen Sensitization Patterns and Prediction of Severity. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 225-235.e10.	3.8	21
128	Proposal of 0.5Âmg of protein/100Âg of processed food as threshold for voluntary declaration of food allergen traces in processed food—A first step in an initiative to better inform patients and avoid fatal allergic reactions: A GA²LEN position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1736-1750.	5.7	21
129	The panel of egg allergens, Gal d 1-Gal d 5: Their improved purification and characterization. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, NA-NA.	3.3	20
130	Minimizing fucosylation in insect cellâ€derived glycoproteins reduces binding to IgE antibodies from the sera of patients with allergy. Biotechnology Journal, 2014, 9, 1206-1214.	3 . 5	20
131	Concomitant sensitization to legumin, Fag e 2 and Fag e 5 predicts buckwheat allergy. Clinical and Experimental Allergy, 2018, 48, 217-224.	2.9	20
132	The Major Birch Pollen Allergen Bet v 1 Induces Different Responses in Dendritic Cells of Birch Pollen Allergic and Healthy Individuals. PLoS ONE, 2015, 10, e0117904.	2.5	19
133	COST Action â€~ImpARAS': what have we learnt to improve food allergy risk assessment. A summary of a 4Âyear networking consortium. Clinical and Translational Allergy, 2020, 10, 13.	3.2	19
134	Cow's Milk Processing—Friend or Foe in Food Allergy?. Foods, 2021, 10, 572.	4.3	19
135	High-Throughput NMR Assessment of the Tertiary Structure of Food Allergens. PLoS ONE, 2012, 7, e39785.	2.5	19
136	Development and validation of the food allergy severity score. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1545-1558.	5.7	19
137	Purification and characterisation of relevant natural and recombinant apple allergens. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, 1-12.	3.3	18
138	Authentication of food allergen quality by physicochemical and immunological methods. Clinical and Experimental Allergy, 2010, 40, 973-986.	2.9	18
139	Distinct Lipid Transfer Proteins display different IgEâ€binding activities that are affected by fatty acid binding. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 827-831.	5.7	17
140	Conflicting verdicts on peanut oral immunotherapy from the Institute for Clinical and Economic Review and US Food and Drug Administration Advisory Committee: Where do we go from here?. Journal of Allergy and Clinical Immunology, 2020, 145, 1153-1156.	2.9	17
141	Cysteine proteinase inhibitor Act d 4 is a functional allergen contributing to the clinical symptoms of kiwifruit allergy. Molecular Nutrition and Food Research, 2010, 54, 373-380.	3 . 3	16
142	Management of anaphylaxis due to COVIDâ€19 vaccines in the elderly. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2952-2964.	5.7	16
143	Synthesis of cross-reactive carbohydrate determinants fragments as tools for in vitro allergy diagnosis. Bioorganic and Medicinal Chemistry, 2011, 19, 1306-1320.	3.0	15
144	ICER report for peanut OIT comes up short. Annals of Allergy, Asthma and Immunology, 2019, 123, 430-432.	1.0	15

#	Article	IF	Citations
145	High-Level Expression of Tree Pollen Isoallergens in <i>Escherichia Coli</i> . International Archives of Allergy and Immunology, 1996, 110, 282-287.	2.1	14
146	The epidemiology of food allergy in Europe: protocol for a systematic review. Clinical and Translational Allergy, 2013, 3, 13.	3.2	14
147	Additional Indications for the Low Allergenic Properties of the Apple Cultivars Santana and Elise. Plant Foods for Human Nutrition, 2013, 68, 391-395.	3.2	14
148	Further studies on the biological activity of hazelnut allergens. Clinical and Translational Allergy, 2015, 5, 26.	3.2	14
149	Watermelon Contains 92% Water but It Also Contains Allergens!. International Archives of Allergy and Immunology, 2009, 149, 289-290.	2.1	13
150	Differential T-Helper Cell Polarization after Allergen-Specific Stimulation of Autologous Dendritic Cells in Polysensitized Allergic Patients. International Archives of Allergy and Immunology, 2015, 166, 97-106.	2.1	13
151	Proteomics and its impact on food allergy diagnosis. EuPA Open Proteomics, 2016, 12, 10-12.	2.5	13
152	Occupational exposure to ultrafine particles in police officers: no evidence for adverse respiratory effects. Journal of Occupational Medicine and Toxicology, 2018, 13, 5.	2.2	13
153	Isolation and Cloning of Bet v 1-Homologous Food Allergens from Celeriac (Api gl) and Apple (Mal dl). Advances in Experimental Medicine and Biology, 1996, 409, 219-224.	1.6	12
154	COVIDâ€19 vaccination in patients receiving allergen immunotherapy (AIT) or biologicalsâ€"EAACI recommendations. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2313-2336.	5.7	12
155	Fireblight (Erwinia amylovora) affects Mal d 1-related allergenicity in apple. European Journal of Plant Pathology, 2011, 131, 1-7.	1.7	11
156	Food and drug allergy, and anaphylaxis in EAACI journals (2018). Pediatric Allergy and Immunology, 2019, 30, 785-794.	2.6	11
157	Production and characterization of an allergen panel for component-resolved diagnosis of celery allergy. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, S241-50.	3.3	10
158	The diagnosis of food allergy: protocol for a systematic review. Clinical and Translational Allergy, 2013, 3, 18.	3.2	10
159	The acute and longâ€term management of food allergy: protocol for a rapid systematic review. Clinical and Translational Allergy, 2013, 3, 12.	3.2	10
160	Prevention of Birch Pollen-Related Food Allergy by Mucosal Treatment with Multi-Allergen-Chimers in Mice. PLoS ONE, 2012, 7, e39409.	2.5	10
161	Glycomarkers in parasitic infections and allergy. Biochemical Society Transactions, 2011, 39, 360-364.	3.4	9
162	Highlights and recent developments in airway diseases in EAACI journals (2017). Clinical and Translational Allergy, 2018, 8, 49.	3.2	9

#	Article	IF	CITATIONS
163	Highlights and recent developments in airway diseases in EAACI journals (2018). Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2329-2341.	5.7	9
164	EuroPrevall Food Allergen Library. Molecular Nutrition and Food Research, 2008, 52, S157-S158.	3.3	8
165	Update: molecular diagnostics of allergies to vegetables and fruits. Allergo Journal International, 2014, 23, 24-34.	2.0	8
166	Highlights and recent developments in food and drug allergy, and anaphylaxis in EAACI Journals (2017). Pediatric Allergy and Immunology, 2018, 29, 801-807.	2.6	8
167	Estimating the Risk of Severe Peanut Allergy Using Clinical Background and IgE Sensitization Profiles. Frontiers in Allergy, 2021, 2, 670789.	2.8	8
168	A Highly Sensitive Cell-Based TLR Reporter Platform for the Specific Detection of Bacterial TLR Ligands. Frontiers in Immunology, 2021, 12, 817604.	4.8	8
169	Component-resolved diagnosis in adult patients with food-dependent anaphylaxis. World Allergy Organization Journal, 2021, 14, 100530.	3.5	7
170	Generation of a Jurkat-based fluorescent reporter cell line to evaluate lipid antigen interaction with the human iNKT cell receptor. Scientific Reports, 2019, 9, 7426.	3.3	6
171	Highlights and recent developments in skin allergy and related diseases in EAACI journals (2018). Clinical and Translational Allergy, 2019, 9, 60.	3.2	6
172	Minimizing fucosylation in insect cellâ€derived glycoproteins reduces binding to IgE antibodies from the sera of patients with allergy. Biotechnology Journal, 2014, 9, 1206-1214.	3.5	5
173	Highlights and recent developments in allergic diseases in EAACI journals (2019). Clinical and Translational Allergy, 2020, 10, 56.	3.2	5
174	Literature review: †in vitro digestibility tests for allergenicity assessment†M. EFSA Supporting Publications, 2013, 10, 529E.	0.7	3
175	The clinical impact of cross-reactions between allergens on allergic skin diseases. Current Opinion in Allergy and Clinical Immunology, 2020, 20, 374-380.	2.3	3
176	Rare food allergens. Allergologie Select, 2021, 5, 29-32.	3.1	3
177	Bet v 1-Homologous Allergens. , 0, , 125-140.		2
178	Authentication of food allergens. Journal of the Serbian Chemical Society, 2013, 78, 315-320.	0.8	2
179	Literature review: †nonâ€lgEâ€mediated immune adverse reactions to foods'. EFSA Supporting Publications 2013, 10, .	' 0.7	2
180	Atopic donor status does not influence the uptake of the major grass pollen allergen, Phl p 5, by dendritic cells. Journal of Immunological Methods, 2015, 424, 120-130.	1.4	2

#	Article	IF	CITATIONS
181	Identifying fruit, nut and vegetable cultivars with low allergen levels and effects of post-harvest treatments., 2007,, 134-146.		1
182	Molecular Diagnostics of Allergy to Fruits and Vegetables. , 2017, , 271-289.		1
183	National Allergy Societies JM Initiative. Revue Francaise D'allergologie, 2020, 60, 205.	0.2	1
184	Food intolerances—aÂdiagnostic challenge. Allergo Journal International, 2022, 31, 23-35.	2.0	1
185	Expression, Purification and Crystallization of Wheat Profilin (Tri a 12). Croatica Chemica Acta, 2011, 84, 419-422.	0.4	O
186	The accuracy of allergometric test for diagnosis of food allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2014, 69, 969-971.	5.7	0
187	The nonâ€specific lipid transfer protein from hazelnut, Cor a 8, a relevant food allergen. Clinical and Translational Allergy, 2015, 5, P17.	3.2	O
188	Purification and characterisation of natural Cor a 14, the 2S albumin from hazelnut, and its isoforms. Clinical and Translational Allergy, 2015, 5, P18.	3.2	0
189	Molekulare Diagnostik der Gem $ ilde{A}^{1}\!\!/\!\!4$ se- und Fruchtallergie. , 2015, , 229-243.		O
190	Prioritizing Research Challenges and Funding for Allergy and Asthma and the Need for Translational Research — The European Strategic Forum on Allergic Diseases. PediatriÄeskaâ Farmakologiâ, 2020, 16, 281-295.	0.4	0