Takahiro Hamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6620576/publications.pdf

Version: 2024-02-01

26 papers 2,105 citations

430874 18 h-index 642732 23 g-index

26 all docs

26 docs citations

26 times ranked

2746 citing authors

#	Article	IF	CITATIONS
1	An Early Arising Role of the MicroRNA156/529-SPL Module in Reproductive Development Revealed by the Liverwort Marchantia polymorpha. Current Biology, 2019, 29, 3307-3314.e5.	3.9	34
2	Stress granule formation is induced by a threshold temperature rather than a temperature difference in Arabidopsis. Journal of Cell Science, 2018, 131, .	2.0	27
3	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	28.9	973
4	Isolation of Microtubules and Microtubule-Associated Proteins. Methods in Molecular Biology, 2017, 1511, 281-289.	0.9	0
5	The GYF domain protein PSIG1 dampens the induction of cell death during plant-pathogen interactions. PLoS Genetics, 2017, 13, e1007037.	3.5	21
6	Arabidopsis Pol II-Dependent in Vitro Transcription System Reveals Role of Chromatin for Light-Inducible <i>rbcS </i> Gene Transcription. Plant Physiology, 2016, 170, 642-652.	4.8	4
7	Profiling and Characterization of Small RNAs in the Liverwort, <i>Marchantia polymorpha </i> Belonging to the First Diverged Land Plants. Plant and Cell Physiology, 2016, 57, 359-372.	3.1	68
8	Diffuse Decapping Enzyme DCP2 Accumulates in DCP1 Foci Under Heat Stress in Arabidopsis thaliana. Plant and Cell Physiology, 2015, 56, 107-115.	3.1	32
9	Lessons from in vitro reconstitution analyses of plant microtubule-associated proteins. Frontiers in Plant Science, 2014, 5, 409.	3.6	5
10	Microtubules Contribute to Tubule Elongation and Anchoring of Endoplasmic Reticulum, Resulting in High Network Complexity in Arabidopsis Â. Plant Physiology, 2014, 166, 1869-1876.	4.8	55
11	Microtubule Organization and Microtubule-Associated Proteins in Plant Cells. International Review of Cell and Molecular Biology, 2014, 312, 1-52.	3.2	140
12	An Atypical Tubulin Kinase Mediates Stress-Induced Microtubule Depolymerization in Arabidopsis. Current Biology, 2013, 23, 1969-1978.	3.9	112
13	An Atypical Tubulin Kinase Mediates Stress-Induced Microtubule Depolymerization in Arabidopsis. Current Biology, 2013, 23, 2196.	3.9	0
14	α-Tubulin is Rapidly Phosphorylated in Response to Hyperosmotic Stress in Rice and Arabidopsis. Plant and Cell Physiology, 2013, 54, 848-858.	3.1	52
15	Purification and Characterization of Novel Microtubule-Associated Proteins from Arabidopsis Cell Suspension Cultures Â. Plant Physiology, 2013, 163, 1804-1816.	4.8	60
16	RNA Processing Bodies, Peroxisomes, Golgi Bodies, Mitochondria, and Endoplasmic Reticulum Tubule Junctions Frequently Pause at Cortical Microtubules. Plant and Cell Physiology, 2012, 53, 699-708.	3.1	64
17	NIMAâ€related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in <i>Arabidopsis thaliana</i> i>. Plant Journal, 2011, 67, 993-1005.	5.7	41
18	GTP Is Required for the Microtubule Catastrophe-Inducing Activity of MAP200, a Tobacco Homolog of XMAP215. Plant Physiology, 2009, 151, 1823-1830.	4.8	10

#	Article	IF	CITATION
19	The Putative RNA-Processing Protein, THO2, is a Microtubule-Associated Protein in Tobacco. Plant and Cell Physiology, 2009, 50, 801-811.	3.1	11
20	Microtubule-Associated Kinase-like Protein RUNKEL Needed for Cell Plate Expansion in Arabidopsis Cytokinesis. Current Biology, 2009, 19, 518-523.	3.9	44
21	Microtubule-Associated Kinase-like Protein RUNKEL Needed for Cell Plate Expansion in Arabidopsis Cytokinesis. Current Biology, 2009, 19, 536.	3.9	0
22	Microtubule-associated proteins in higher plants. Journal of Plant Research, 2007, 120, 79-98.	2.4	111
23	n -Butanol induces depolymerization of microtubules in vivo and in vitro. Plant and Cell Physiology, 2006, 47, 1004-1009.	3.1	35
24	Purification and Characterization of Plant Dynamin from Tobacco BY-2 Cells. Plant and Cell Physiology, 2006, 47, 1175-1181.	3.1	15
25	Plant-Specific Microtubule-Associated Protein SPIRAL2 Is Required for Anisotropic Growth in Arabidopsis. Plant Physiology, 2004, 136, 3933-3944.	4.8	137
26	Characterization of a 200 kDa Microtubule-associated Protein of Tobacco BY-2 Cells, a Member of the XMAP215/MOR1 Family. Plant and Cell Physiology, 2004, 45, 1233-1242.	3.1	54