Mohammad Tarique

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6620523/publications.pdf

Version: 2024-02-01

516710 454955 43 959 16 citations h-index papers

g-index 44 44 44 1125 docs citations times ranked citing authors all docs

30

#	Article	IF	CITATIONS
1	Gut Microbiota Promotes Tumor Growth in Mice by Modulating Immune Response. Gastroenterology, 2018, 155, 33-37.e6.	1.3	278
2	Binding studies and biological evaluation of \hat{l}^2 -carotene as a potential inhibitor of human calcium/calmodulin-dependent protein kinase IV. International Journal of Biological Macromolecules, 2017, 96, 161-170.	7. 5	67
3	Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells. Molecular and Cellular Biochemistry, 2018, 438, 35-45.	3.1	56
4	T helper cells in leprosy: An update. Immunology Letters, 2017, 184, 61-66.	2.5	51
5	Interleukin-10 Producing Regulatory B Cells Transformed CD4+CD25∠Into Tregs and Enhanced Regulatory T Cells Function in Human Leprosy. Frontiers in Immunology, 2018, 9, 1636.	4.8	45
6	Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Seminars in Cancer Biology, 2022, 86, 624-644.	9.6	41
7	Increased IL-35 producing Tregs and CD19+IL-35+ cells are associated with disease progression in leprosy patients. Cytokine, 2017, 91, 82-88.	3.2	36
8	IL-12 and IL-23 modulate plasticity of FoxP3 + regulatory T cells in human Leprosy. Molecular Immunology, 2017, 83, 72-81.	2.2	34
9	The Role of Natural Products and Their Multitargeted Approach to Treat Solid Cancer. Cells, 2022, 11, 2209.	4.1	34
10	Hesperidin AMKIV interaction and its impact on cell proliferation and apoptosis in the human hepatic carcinoma and neuroblastoma cells. Journal of Cellular Biochemistry, 2019, 120, 15119-15130.	2.6	33
11	A critical transcription factor NF-κB as a cancer therapeutic target and its inhibitors as cancer treatment options. Current Medicinal Chemistry, 2020, 27, 4117-4132.	2.4	30
12	Association of TNF-α-308(GG), IL-10â^'819(TT), IL-10â^'1082(GG) and IL-1R1+1970(CC) genotypes with the susceptibility and progression of leprosy in North Indian population. Cytokine, 2015, 73, 61-65.	3.2	29
13	Targeting PI3K/Akt/mTOR Pathway by Different Flavonoids: A Cancer Chemopreventive Approach. International Journal of Molecular Sciences, 2021, 22, 12455.	4.1	29
14	Design, synthesis, and biological evaluation of pyrimidine derivatives as potential inhibitors of human calcium/calmodulinâ€dependent protein kinase <scp>IV</scp> . Chemical Biology and Drug Design, 2017, 89, 741-754.	3.2	28
15	<scp>CD</scp> 4 ⁺ <scp>TCR</scp> γδ ⁺ FoxP3 ⁺ cells: An unidentified population of immunosuppressive cells towards disease progression leprosy patients. Experimental Dermatology, 2017, 26, 946-948.	2.9	19
16	Fate of T Cells and their Secretory Proteins During the Progression of Leprosy. Current Protein and Peptide Science, 2018, 19, 889-899.	1.4	19
17	Regulatory T cells antagonize proinflammatory response of IL-17 during cutaneous tuberculosis. Journal of Inflammation Research, 2018, Volume 11, 377-388.	3.5	16
18	$\hat{I}^{3}\hat{I}$ T cells are associated with inflammation and immunopathogenesis of leprosy reactions. Immunology Letters, 2018, 200, 55-65.	2.5	16

#	Article	IF	CITATIONS
19	Elevated IL-6R on CD4+ T cells promotes IL-6 driven Th17 cell responses in patients with T1R leprosy reactions. Scientific Reports, 2020, 10, 15143.	3.3	15
20	Know Thy Enemyâ€"Understanding the Role of Inflammation in Severe Acute Pancreatitis. Gastroenterology, 2020, 158, 46-48.	1.3	12
21	Pirfenidone increases IL-10 and improves acute pancreatitis in multiple clinically relevant murine models. JCI Insight, 2022, 7, .	5.0	10
22	Association of HCV mutated proteins and host SNPs in the development of hepatocellular carcinoma. Infection, Genetics and Evolution, 2018, 60, 160-172.	2.3	9
23	Association of dietary intake below recommendations and micronutrient deficiencies during pregnancy and low birthweight. Journal of Perinatal Medicine, 2019, 47, 724-731.	1.4	9
24	Pirfenidone ameliorates chronic pancreatitis in mouse models through immune and cytokine modulation. Pancreatology, 2022, 22, 553-563.	1.1	8
25	Calcium-/Calmodulin-Dependent Protein Kinase IV (CAMKIV): A Multifunctional Enzyme and Its Role in Various Cancer: An Update. Current Molecular Biology Reports, 2020, 6, 139-147.	1.6	7
26	Association of IL-10 Gene Polymorphism With IL-10 Secretion by CD4 and T Regulatory Cells in Human Leprosy. Frontiers in Immunology, 2020, 11, 1974.	4.8	6
27	Plant-Derived Iron Nanoparticles for Removal of Heavy Metals. International Journal of Chemical Engineering, 2022, 2022, 1-12.	2.4	6
28	Role of Phytonanotechnology in the Removal of Water Contamination. Journal of Nanomaterials, 2022, 2022, 1-19.	2.7	5
29	Depletion of the gut microbiota decreases pancreatic cancer burden by modulating the immune system. Pancreatology, 2018, 18, S90-S91.	1.1	3
30	The Causal Association Between Occupational, Environmental, and Lifestyle Factors and Reproductive Cancer Risk. Current Molecular Biology Reports, 2020, 6, 149-160.	1.6	2
31	Tu1371 - Hydromorphone Worsens the Severity of Acute Pancreatitis in Animal Model of the Disease. Gastroenterology, 2018, 154, S-946.	1.3	1
32	Mo1374 PIRFENIDONE IMPROVES SEQUELAE OF WELL-ESTABLISHED CHRONIC PANCREATITIS IN MOUSE MODELS BY IMMUNE- AND CYTOKINE-MODULATION Gastroenterology, 2020, 158, S-868.	1.3	1
33	Mo1380 PIRFENIDONE TREATMENT AMELIORATES THE SEVERITY OF ACUTE PANCREATITIS BY REDUCING MACROPHAGE INFILTRATION AND MODULATING ITS POLARIZATION Gastroenterology, 2020, 158, S-869.	1.3	1
34	Smoke-Induced Gut Microbial Dysbiosis Promotes Cancer Progression by Creating Immunosuppressive Tumor Microenvironment. Journal of the American College of Surgeons, 2020, 231, S280-S281.	0.5	1
35	Su303 IL10 IS REQUIRED FOR THE BENEFICIAL EFFECT OF PIRFENIDONE IN MOUSE MODELS OF WELL-ESTABLISHED CHRONIC PANCREATITIS. Gastroenterology, 2021, 160, S-667.	1.3	1
36	Abstract 5127: Eradication of the gut microbiota reduces cancer burden in multiple models by modulating the immune system. Cancer Research, 2018, 78, 5127-5127.	0.9	1

#	Article	IF	CITATIONS
37	Tu1369 - Blockage of Morphine Induced Intestional Permiabilty by TLR2 Deletion Prevents Worsening of Acute Pancreatitis. Gastroenterology, 2018, 154, S-946.	1.3	0
38	Tu1437 – Depletion of Gram-Positive Bacteria in the Gi Tract with Oral Vancomycin Prevents Morphine Associated Worsening of Injury in Acute Pancreatitis. Gastroenterology, 2019, 156, S-1039.	1.3	0
39	Tu1456 – Morphine Treatment in Acute Pancreatitis Affects Macrophage Functions Leading to Increase in Inflammation and Delay in Recovery. Gastroenterology, 2019, 156, S-1045.	1.3	0
40	Tu1449 – Pirfenidone Ameliorates Well-Established Chronic Pancreatitis in Mouse Models by Immune-Modulation. Gastroenterology, 2019, 156, S-1043-S-1044.	1.3	0
41	18 – Role of Sonic Hedgehog Pathway in the Pathogenesis of Chronic Pancreatitis in Mouse Model. Gastroenterology, 2019, 156, S-7-S-8.	1.3	0
42	Mo1381 ROLE OF IL-17A IN THE PATHOGENESIS OF CHRONIC PANCREATITIS AND PANCREATIC STELLATE CELL ACTIVATION Gastroenterology, 2020, 158, S-869-S-870.	1.3	0
43	Pirfenidone Alleviates Features of Well-Established Chronic Pancreatitis in Mouse Models. American Journal of Clinical Pathology, 2020, 154, S74-S74.	0.7	0