Sara A Wickström

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/661996/publications.pdf

Version: 2024-02-01

68 papers 5,177 citations

37 h-index

94433

64 g-index

74 all docs

74 docs citations

times ranked

74

7644 citing authors

#	Article	IF	Citations
1	Mechanical Forces in Nuclear Organization. Cold Spring Harbor Perspectives in Biology, 2022, 14, a039685.	5.5	28
2	ATP allosterically stabilizes integrin-linked kinase for efficient force generation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2106098119.	7.1	5
3	Stretched skin cells divide without DNA replication. Nature, 2022, 605, 31-32.	27.8	1
4	Mechanical regulation of chromatin and transcription. Nature Reviews Genetics, 2022, 23, 624-643.	16.3	64
5	Hydrostatic pressure prevents chondrocyte differentiation through heterochromatin remodeling. Journal of Cell Science, 2021, 134, .	2.0	17
6	BETting against wound healing. Nature Chemical Biology, 2021, 17, 233-235.	8.0	1
7	Mechanochemical control of epidermal stem cell divisions by B-plexins. Nature Communications, 2021, 12, 1308.	12.8	24
8	Shaping the stem cell field. Nature Reviews Molecular Cell Biology, 2021, 22, 305-305.	37.0	4
9	A Niche Above: A Novel Modality of Stem Cell Regulation in Mammalian Skin Epidermis. Cell Stem Cell, 2021, 28, 365-366.	11.1	O
10	$\langle i \rangle N \langle i \rangle 1$ -acetylspermidine is a determinant of hair follicle stem cell fate. Journal of Cell Science, 2021, 134, .	2.0	11
11	Laminin 332 Is Indispensable for Homeostatic Epidermal Differentiation Programs. Journal of Investigative Dermatology, 2021, 141, 2602-2610.e3.	0.7	11
12	Cell influx and contractile actomyosin force drive mammary bud growth and invagination. Journal of Cell Biology, 2021, 220, .	5.2	7
13	Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nature Cell Biology, 2021, 23, 771-781.	10.3	51
14	Calcium signaling mediates a biphasic mechanoadaptive response of endothelial cells to cyclic mechanical stretch. Molecular Biology of the Cell, 2021, 32, 1724-1736.	2.1	16
15	What doesn't kill you makes you differentiate. Developmental Cell, 2021, 56, 3303-3304.	7.0	0
16	Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation. Journal of Allergy and Clinical Immunology, 2020, 145, 283-300.e8.	2.9	24
17	Mechanical Forces in the Skin: Roles in Tissue Architecture, Stability, and Function. Journal of Investigative Dermatology, 2020, 140, 284-290.	0.7	67
18	Glutamine Metabolism Controls Stem Cell Fate Reversibility and Long-Term Maintenance in the Hair Follicle. Cell Metabolism, 2020, 32, 629-642.e8.	16.2	60

#	Article	IF	CITATIONS
19	Defining the Design Principles of Skin Epidermis Postnatal Growth. Cell, 2020, 181, 604-620.e22.	28.9	65
20	Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage. Cell, 2020, 181, 800-817.e22.	28.9	341
21	How cancer invasion takes shape. Nature, 2020, 585, 355-356.	27.8	1
22	Somatic Niche Cells Regulate the CEP-1/p53-Mediated DNA Damage Response in Primordial Germ Cells. Developmental Cell, 2019, 50, 167-183.e8.	7.0	33
23	Cell biology and mechanopathology of laminopathic cardiomyopathies. Journal of Cell Biology, 2019, 218, 393-394.	5.2	3
24	Special issue on "mechanotransduction in cell fate determination―– From molecular switches to organ-level regulation. Experimental Cell Research, 2019, 382, 111452.	2.6	3
25	Epigenetic gene regulation, chromatin structure, and force-induced chromatin remodelling in epidermal development and homeostasis. Current Opinion in Genetics and Development, 2019, 55, 46-51.	3.3	35
26	Editorial overview: Cell differentiation and development â€" wiring principles of transcriptional states, signaling networks and cell fate trajectories. Current Opinion in Cell Biology, 2019, 61, iii-vi.	5.4	0
27	TGFB1 is secreted through an unconventional pathway dependent on the autophagic machinery and cytoskeletal regulators. Autophagy, 2018, 14, 465-486.	9.1	80
28	Adherens Junctions and Desmosomes Coordinate Mechanics and Signaling to Orchestrate Tissue Morphogenesis and Function: An Evolutionary Perspective. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029207.	5 . 5	102
29	Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nature Cell Biology, 2018, 20, 69-80.	10.3	207
30	Cell adhesion and mechanics as drivers of tissue organization and differentiation: local cues for large scale organization. Current Opinion in Cell Biology, 2018, 54, 89-97.	5.4	72
31	Signaling in the stem cell niche: regulating cell fate, function and plasticity. Development (Cambridge), 2018, 145, .	2.5	143
32	YAP-mediated mechanotransduction determines the podocyte's response to damage. Science Signaling, 2017, 10, .	3.6	61
33	Hair follicle stem cell cultures reveal selfâ€organizing plasticity of stem cells and theirÂprogeny. EMBO Journal, 2017, 36, 151-164.	7.8	70
34	Lipodystrophic laminopathy: Lamin A mutation relaxes chromatin architecture to impair adipogenesis. Journal of Cell Biology, 2017, 216, 2607-2610.	5.2	13
35	E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nature Communications, 2017, 8, 1250.	12.8	147
36	Emerging roles of mechanical forces in chromatin regulation. Journal of Cell Science, 2017, 130, 2243-2250.	2.0	152

#	Article	IF	CITATIONS
37	Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineageÂcommitment. Nature Cell Biology, 2016, 18, 864-875.	10.3	364
38	ILK Induction in Lymphoid Organs by a TNFα–NF-κB–Regulated Pathway Promotes the Development of Chronic Lymphocytic Leukemia. Cancer Research, 2016, 76, 2186-2196.	0.9	13
39	Force generation and transmission in keloid fibroblasts: dissecting the role of mechanosensitive molecules in cell function. Experimental Dermatology, 2015, 24, 574-575.	2.9	5
40	Invasion of Herpes Simplex Virus Type 1 into Murine Epidermis: An Ex Vivo Infection Study. Journal of Investigative Dermatology, 2015, 135, 3009-3016.	0.7	15
41	Integrin-linked kinase regulates the niche of quiescent epidermal stem cells. Nature Communications, 2015, 6, 8198.	12.8	83
42	Role of integrin signalling through integrinâ€linked kinase in skin physiology and pathology. Experimental Dermatology, 2014, 23, 453-456.	2.9	7
43	The late endosomal p14–MP1 (LAMTOR2/3) complex regulates focal adhesion dynamics during cell migration. Journal of Cell Biology, 2014, 205, 525-540.	5.2	82
44	Stabilization of integrin-linked kinase by the Hsp90-CHIP axis impacts cellular force generation, migration and the fibrotic response. EMBO Journal, 2013, 32, 1409-1424.	7.8	59
45	Deletion of integrin linked kinase in endothelial cells results in defective RTK signaling caused by caveolin 1 mislocalization. Development (Cambridge), 2013, 140, 987-995.	2.5	21
46	The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A165. Biomaterials, 2013, 34, 5958-5968.	11.4	39
47	InÂVivo SILAC-Based Proteomics Reveals Phosphoproteome Changes during Mouse Skin Carcinogenesis. Cell Reports, 2013, 3, 552-566.	6.4	90
48	ILK: a pseudokinase with a unique function in the integrin–actin linkage. Biochemical Society Transactions, 2013, 41, 995-1001.	3.4	64
49	The weakest link: A new paradigm for stabilizing the integrin–actin connection. Cell Cycle, 2013, 12, 2929-2930.	2.6	3
50	Genetic Analyses of Integrin Signaling. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005116-a005116.	5 . 5	81
51	Regulation of membrane traffic by integrin signaling. Trends in Cell Biology, 2011, 21, 266-273.	7.9	59
52	CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO Journal, 2010, 29, 131-144.	7.8	148
53	The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase!. EMBO Journal, 2010, 29, 281-291.	7.8	229
54	Integrin-Linked Kinase Controls Microtubule Dynamics Required for Plasma Membrane Targeting of Caveolae. Developmental Cell, 2010, 19, 574-588.	7.0	154

#	Article	IF	CITATIONS
55	Genetic and cell biological analysis of integrin outside-in signaling. Genes and Development, 2009, 23, 397-418.	5.9	637
56	\hat{l}_{\pm} -parvin controls vascular mural cell recruitment to vessel wall by regulating RhoA/ROCK signalling. EMBO Journal, 2009, 28, 3132-3144.	7.8	81
57	Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature, 2009, 461, 1002-1006.	27.8	123
58	Integrins Anchor the Invasive Machinery. Developmental Cell, 2009, 17, 158-160.	7.0	1
59	Solid Tumor Proteome and Phosphoproteome Analysis by High Resolution Mass Spectrometry. Journal of Proteome Research, 2008, 7, 5314-5326.	3.7	132
60	Integrin-linked kinase stabilizes myotendinous junctions and protects muscle from stress-induced damage. Journal of Cell Biology, 2008, 180, 1037-1049.	5.2	91
61	Binding of Endostatin to Phosphatidylserine-Containing Membranes and Formation of Amyloid-like Fibersâ€. Biochemistry, 2005, 44, 2857-2863.	2.5	95
62	Endostatin Signaling and Regulation of Endothelial Cell–Matrix Interactions. Advances in Cancer Research, 2005, 94, 197-229.	5.0	46
63	An Endostatin-derived Peptide Interacts with Integrins and Regulates Actin Cytoskeleton and Migration of Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 20178-20185.	3.4	101
64	Regulation of membrane-type-1 matrix metalloproteinase activity by its cytoplasmic domain. Vol. 275 (2000) 15006-15013. Journal of Biological Chemistry, 2004, 279, 40246.	3.4	0
65	Matrix reloaded to circulation hits the tumor target. Cancer Cell, 2003, 3, 513-514.	16.8	8
66	Endostatin Associates with Lipid Rafts and Induces Reorganization of the Actin Cytoskeleton via Down-regulation of RhoA Activity. Journal of Biological Chemistry, 2003, 278, 37895-37901.	3.4	114
67	Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Research, 2002, 62, 5580-9.	0.9	161
68	Regulation of Membrane-type-1 Matrix Metalloproteinase Activity by Its Cytoplasmic Domain. Journal of Biological Chemistry, 2000, 275, 15006-15013.	3.4	149