
Michael Wagreich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6619938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Great Acceleration is real and provides a quantitative basis for the proposed Anthropocene Series/Epoch. Episodes, 2022, 45, 359-376.	0.8	32
2	The Paleogene Gosau Group Slope Basins of the Incipient Eastern Alpine Orogenic Wedge: A Case Study at the Gams Basin (Austria). Minerals (Basel, Switzerland), 2022, 12, 178.	0.8	1
3	Ostracod Response to a Major Middle Jurassic Sea-Level Fall: A Case Study from Southern Tunisia (North Gondwana) with Implications on Regional Stratigraphy and Palaeoenvironmental Reconstruction. Geosciences (Switzerland), 2022, 12, 93.	1.0	Ο
4	Earth system changes during the cooling greenhouse phase of the Late Cretaceous: Coniacian-Santonian OAE3 subevents and fundamental variations in organic carbon deposition. Earth-Science Reviews, 2022, 229, 104022.	4.0	19
5	Geochemical Evidence for Photic Zone Euxinia During Greenhouse Climate in the Tethys Sea, Egypt. Advances in Science, Technology and Innovation, 2022, , 373-374.	0.2	4
6	Isotopic evidence for changes in the mercury and zinc cycles during Oceanic Anoxic Event 2 in the northwestern Tethys, Austria. Global and Planetary Change, 2022, 215, 103881.	1.6	2
7	Cenozoic growth of the Eastern Kunlun Range (northern Tibetan Plateau): evidence from sedimentary records in the southwest Qaidam Basin. International Geology Review, 2021, 63, 769-786.	1.1	7
8	Ostracods as proxies for marginal marine to non-marine intervals in the mid-Cretaceous carbonate platform of the Central Tunisian Atlas (North Africa): Response to major short-term sea-level falls. Cretaceous Research, 2021, 117, 104581.	0.6	13
9	An integrated multi-proxy study of cyclic pelagic deposits from the north-western Tethys: The Campanian of the Postalm section (Gosau Group, Austria). Cretaceous Research, 2021, 120, 104704.	0.6	3
10	The Anthropocene: Comparing Its Meaning in Geology (Chronostratigraphy) with Conceptual Approaches Arising in Other Disciplines. Earth's Future, 2021, 9, e2020EF001896.	2.4	61
11	Late Holocene periods of copper mining in the Eisenerz Alps (Austria) deduced from calcareous lake deposits. Anthropocene, 2021, 33, 100273.	1.6	4
12	Multi-proxy analyses of a minerotrophic fen to reconstruct prehistoric periods of human activity associated with salt mining in the Hallstatt region (Austria). Journal of Archaeological Science: Reports, 2021, 36, 102813.	0.2	3
13	A new diverse charophyte flora and biozonation of the Eocene bauxite cover-sequence at GÃint (Vértes) Tj ETC	2q110.78	34314 rgBT (
14	Sedimentology and sediment geochemistry of the pelagic Paryab section (Zagros Mountains, Iran): implications for sea level fluctuations and paleoenvironments in the late Paleocene to middle Eocene. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	3
15	Multi-Proxy Provenance Analyses of the Kingriali and Datta Formations (Triassic–Jurassic Transition): Evidence for Westward Extension of the Neo-Tethys Passive Margin from the Salt Range (Pakistan). Minerals (Basel, Switzerland), 2021, 11, 573.	0.8	5
16	Quantitative compaction trends of Miocene to Holocene carbonates off the west coast of Australia. Australian Journal of Earth Sciences, 2021, 68, 1149-1161.	0.4	8
17	Investigating Mesozoic Climate Trends and Sensitivities With a Large Ensemble of Climate Model Simulations. Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004134.	1.3	21
18	Living environment of the early Jehol Biota: A case study from the Lower Cretaceous Dabeigou Formation, Luanping Basin (North China). Cretaceous Research, 2021, 124, 104833.	0.6	7

#	Article	IF	CITATIONS
19	Paleoclimatic variability in the southern Tethys, Egypt: Insights from the mineralogy and geochemistry of Upper Cretaceous lacustrine organic-rich deposits. Cretaceous Research, 2021, 126, 104880.	0.6	29
20	Climate variability and paleoceanography during the Late Cretaceous: Evidence from palynology, geochemistry and stable isotopes analyses from the southern Tethys. Cretaceous Research, 2021, 126, 104831.	0.6	12
21	Discovery of a new Lower Cretaceous Wealden-type ostracod fauna from the Bouhedma Formation, Central Tunisian Atlas, North Africa. Cretaceous Research, 2021, 127, 104942.	0.6	0
22	A brackish to non-marine aquatic and terrestrial fossil assemblage with vertebrates from the lower Coniacian (Upper Cretaceous) Gosau Group of the Tiefengraben locality near St. Wolfgang im Salzkammergut, Austria. Cretaceous Research, 2021, 127, 104938.	0.6	5
23	Provenance Characterization of Campanian Lacustrine Organic-Rich Mudstones on the Southern Tethyan Margin, Egypt. ACS Earth and Space Chemistry, 2021, 5, 197-209.	1.2	22
24	Tectono-Paleogeographic Impact on the Permian Depositional Environment and Provenance around the Chaiwopu Depression in the Southern Junggar Basin, NW China. Minerals (Basel, Switzerland), 2021, 11, 1237.	0.8	0
25	Sedimentation and glaciations during the Pleistocene: Palaeoclimate reconstruction in the Peshawar Basin, Pakistan. Geological Journal, 2020, 55, 671-693.	0.6	7
26	Cenomanian–Turonian drowning of the Arabian Carbonate Platform, the İnişdere section, Adıyaman, SE Turkey. Geological Society Special Publication, 2020, 498, 189-210.	0.8	6
27	Trace metals as markers for historical anthropogenic contamination: Evidence from the Peshawar Basin, Pakistan. Science of the Total Environment, 2020, 703, 134926.	3.9	4
28	Compaction trend estimation and applications to sedimentary basin reconstruction (BasinVis 2.0). Applied Computing and Geosciences, 2020, 5, 100015.	1.0	12
29	The pelagic archive of short-term sea-level change in the Cretaceous: a review of proxies linked to orbital forcing. Geological Society Special Publication, 2020, 498, 39-56.	0.8	9
30	Aquifer-eustasy as the main driver of short-term sea-level fluctuations during Cretaceous hothouse climate phases. Geological Society Special Publication, 2020, 498, 9-38.	0.8	51
31	A late Jurassic carbon-isotope record from the Qiangtang Basin (Tibet), eastern Tethys, and its palaeoceanographic implications. Global and Planetary Change, 2020, 195, 103349.	1.6	8
32	Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. Communications Earth & Environment, 2020, 1, .	2.6	101
33	Short-Term Sea Level Changes of the Upper Cretaceous Carbonates: Calibration between Palynomorphs Composition, Inorganic Geochemistry, and Stable Isotopes. Minerals (Basel,) Tj ETQq1 1 0.784314	łr gΒ ₹/Ο∖	verlææk 10 Tf
34	Geochemistry and palynology of the upper Albian at the Abu Gharadig Basin, southern Tethys: Constraints on the oceanic anoxic event 1d. Geological Journal, 2020, 55, 6338-6360.	0.6	21
35	Depositional and organic carbon-controlled regimes during the Coniacian-Santonian event: First results from the southern Tethys (Egypt). Marine and Petroleum Geology, 2020, 115, 104285.	1.5	45
36	Late Cretaceous stratigraphy in the Mudurnu–Göynük Basin (Turkey) and inferences on sea-level change in the Late Campanian to Early Maastrichtian. Geological Society Special Publication, 2020, 498, 129-146.	0.8	3

#	Article	IF	CITATIONS
37	An introduction to causes and consequences of Cretaceous sea-level changes (IGCP 609). Geological Society Special Publication, 2020, 498, 1-8.	0.8	5
38	Clay mineralogy of Miocene mudstones from the Lower Austrian Molasse Basin. Austrian Journal of Earth Sciences, 2020, 113, 125-138.	0.9	1
39	Anthropogenic and climate signals in late-Holocene peat layers of an ombrotrophic bog in the Styrian Enns valley (Austrian Alps). E&G Quaternary Science Journal, 2020, 69, 121-137.	0.2	4
40	Subsidence Visualization. SpringerBriefs in Petroleum Geoscience & Engineering, 2019, , 37-54.	0.1	1
41	Subsidence Analysis. SpringerBriefs in Petroleum Geoscience & Engineering, 2019, , 9-35.	0.1	0
42	Subsidence Analysis and Visualization. SpringerBriefs in Petroleum Geoscience & Engineering, 2019, , .	0.1	7
43	Chronology of subduction and collision along the İzmir-Ankara suture in Western Anatolia: records from the Central Sakarya Basin. International Geology Review, 2019, 61, 1244-1269.	1.1	15
44	Provenance and palaeogeographic evolution of Lower Miocene sediments in the eastern North Alpine Foreland Basin. Swiss Journal of Geosciences, 2019, 112, 269-286.	0.5	7
45	Climateâ€environmental Deteriorations in a Greenhouse Earth System: Causes and Consequences of Shortâ€Term Cretaceous Seaâ€Level Changes (a Report on IGCP 609). Acta Geologica Sinica, 2019, 93, 144-146.	0.8	2
46	Regional sediment sources versus the Indus River system: The Plio-Pleistocene of the Peshawar Basin (NW-Pakistan). Sedimentary Geology, 2019, 389, 26-41.	1.0	6
47	Vertebrate remains from the Turonian (Upper Cretaceous) Gosau Group of Gams, Austria. Cretaceous Research, 2019, 99, 190-208.	0.6	11
48	Early Miocene expansion of C4 vegetation on the northern Tibetan Plateau. Global and Planetary Change, 2019, 177, 173-185.	1.6	6
49	A formal Anthropocene is compatible with but distinct from its diachronous anthropogenic counterparts: a response to W.F. Ruddiman's â€~three flaws in defining a formal Anthropocene'. Progress in Physical Geography, 2019, 43, 319-333.	1.4	28
50	Hot-house climate during the Triassic/Jurassic transition: The evidence of climate change from the southern hemisphere (Salt Range, Pakistan). Global and Planetary Change, 2019, 172, 15-32.	1.6	32
51	Orbital cyclicity in sedimentary sequence and climatic indications of C-O isotopes from Lower Cretaceous in Qingxi Sag, Jiuquan Basin, NW China. Geoscience Frontiers, 2019, 10, 467-479.	4.3	14
52	Upper Cretaceous volcaniclastic complexes and calcareous plankton biostratigraphy in the Western Pontides, NW Turkey. Turkish Journal of Earth Sciences, 2019, 28, 187-206.	0.4	6
53	TETGAR_C: a novel three-dimensional (3D) provenance plot and calculation tool for detrital garnets. Journal of Geosciences (Czech Republic), 2019, , 127-148.	0.3	1
54	Late Cretaceous climbing erg systems in the western Xinjiang Basin: Palaeoatmosphere dynamics and East Asia margin tectonic forcing on desert expansion and preservation. Marine and Petroleum Geology, 2018, 93, 539-552.	1.5	21

#	Article	IF	CITATIONS
55	Geochemical fingerprinting of Maastrichtian oil shales from the Central Eastern Desert, Egypt: Implications for provenance, tectonic setting, and source area weathering. Geological Journal, 2018, 53, 2597-2612.	0.6	28
56	Depositional constraints and diagenetic pathways controlling petrophysics of Middle Miocene shallow-water carbonate reservoirs (Leitha limestones), Central Paratethys, Austria-Hungary. Marine and Petroleum Geology, 2018, 91, 586-598.	1.5	14
57	Early mining and smelting lead anomalies in geological archives as potential stratigraphic markers for the base of an early Anthropocene. Infrastructure Asset Management, 2018, 5, 177-201.	1.2	35
58	Global Boundary Stratotype Section and Point (GSSP) for the Anthropocene Series: Where and how to look for potential candidates. Earth-Science Reviews, 2018, 178, 379-429.	4.0	153
59	Tethyan plankton bioevents calibrated to stable isotopes across the upper Santonian–lower Campanian transition in north-western Tunisia. Cretaceous Research, 2018, 85, 128-141.	0.6	9
60	Mid-Cretaceous aeolian desert systems in the Yunlong area of the Lanping Basin, China: Implications for palaeoatmosphere dynamics and paleoclimatic change in East Asia. Sedimentary Geology, 2018, 364, 121-140.	1.0	20
61	Plankton biostratigraphy and magnetostratigraphy of the Santonian–Campanian boundary interval in the Mudurnu–GöynA¼k Basin, northwestern Turkey. Cretaceous Research, 2018, 87, 296-311.	0.6	12
62	The upper Coniacian to upper Santonian drowned Arabian carbonate platform, the Mardin-Mazidag area, SE Turkey: Sedimentological, stratigraphic, and ichthyofaunal records. Cretaceous Research, 2018, 84, 153-167.	0.6	11
63	The Santonian – Campanian boundary and the end of the Long Cretaceous Normal Polarity-Chron: Isotope and plankton stratigraphy of a pelagic reference section in the NW Tethys (Austria). Newsletters on Stratigraphy, 2018, 51, 445-476.	0.5	25
64	Paleocene-Eocene Calcareous Nannofossil Biostratigraphy andÂCyclostratigraphy From the Neo-Tethys, Pabdeh Formation of the Zagros Basin (Iran). Stratigraphy & Timescales, 2018, , 357-383.	0.2	2
65	Maastrichtian oil shale deposition on the southern Tethys margin, Egypt: Insights into greenhouse climate and paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505, 18-32.	1.0	35
66	A calcite crisis unravelling Early Miocene (Ottnangian) stratigraphy in the North Alpine–Carpathian Foreland Basin: a litho- and chemostratigraphic marker for the Rzehakia Lake System. Geologica Carpathica, 2018, 69, 315-334.	0.2	7
67	Facies, palaeogeography and stratigraphy of the lower Miocene Traisen Formation and Wildendürnbach Formation (former "Oncophora Bedsâ€) in the Molasse Zone of Lower Austria. Austrian Journal of Earth Sciences, 2018, 111, 75-91.	0.9	5
68	Jurassic–Cretaceous radiolarian-bearing strata from the Gresten Klippen Zone and the St. Veit Klippen Zone (Wienerwald, Eastern Alps, Austria): Implications for stratigraphy and paleogeography. Austrian Journal of Earth Sciences, 2018, 111, 204-222.	0.9	3
69	Polyphase tectonic subsidence evolution of the Vienna Basin inferred from quantitative subsidence analysis of the northern and central parts. International Journal of Earth Sciences, 2017, 106, 687-705.	0.9	30
70	Mid-Cretaceous desert system in the Simao Basin, southwestern China, and its implications for sea-level change during a greenhouse climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 468, 529-544.	1.0	33
71	Integrated palaeo-environmental proxies of the Campanian to Danian organic-rich Quseir section, Egypt. Marine and Petroleum Geology, 2017, 86, 771-786.	1.5	11

 $_{72}$ Geochemistry, environmental and provenance study of the Middle Miocene Leitha limestones (Central) Tj ETQq0 0 8 rg BT /Overlock 10 $_{4}^{-72}$

#	Article	IF	CITATIONS
73	The Working Group on the Anthropocene: Summary of evidence and interim recommendations. Anthropocene, 2017, 19, 55-60.	1.6	310
74	Middle to Late Pleistocene multi-proxy record of environmental response to climate change from the Vienna Basin, Central Europe (Austria). Quaternary Science Reviews, 2017, 173, 193-210.	1.4	7
75	A Periglacial Palaeoenvionment in the Upper Carboniferous-Lower Permian Tobra Formation of the Salt Range, Pakistan. Acta Geologica Sinica, 2017, 91, 1063-1078.	0.8	6
76	Special Topic: Cretaceous greenhouse palaeoclimate and sea-level changes. Science China Earth Sciences, 2017, 60, 1-4.	2.3	27
77	Latest Pannonian and Quaternary evolution at the transition between Eastern Alps and Pannonian Basin: new insights from geophysical, sedimentological and geochronological data. International Journal of Earth Sciences, 2017, 106, 1695-1721.	0.9	13
78	Making the case for a formal Anthropocene Epoch: an analysis of ongoing critiques. Newsletters on Stratigraphy, 2017, 50, 205-226.	0.5	100
79	BasinVis 1.0: A MATLAB®-based program for sedimentary basin subsidence analysis and visualization. Computers and Geosciences, 2016, 91, 119-127.	2.0	21
80	The Anthropocene: a conspicuous stratigraphical signal of anthropogenic changes in production and consumption across the biosphere. Earth's Future, 2016, 4, 34-53.	2.4	66
81	Stratigraphic and Earth System approaches to defining the Anthropocene. Earth's Future, 2016, 4, 324-345.	2.4	162
82	The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene. Anthropocene, 2016, 13, 4-17.	1.6	622
83	Palaeoenvironmental changes in the northwestern Tethys during the Late Campanian Radotruncana calcarata Zone: Implications from stable isotopes and geochemistry. Chemical Geology, 2016, 420, 280-296.	1.4	21
84	Review: Short-term sea-level changes in a greenhouse world — A view from the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441, 393-411.	1.0	139
85	The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 2016, 351, aad2622.	6.0	1,543
86	Assessing pelagic palaeoenvironments using foraminiferal assemblages — A case study from the late Campanian Radotruncana calcarata Zone (Upper Cretaceous, Austrian Alps). Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441, 467-492.	1.0	9
87	Microbially-driven formation of Cenozoic siderite and calcite concretions from eastern Austria. Austrian Journal of Earth Sciences, 2016, 109, .	0.9	7
88	3D visualization of the sedimentary fill and subsidence evolution in the northern and central Vienna Basin (Miocene). Austrian Journal of Earth Sciences, 2016, 109, .	0.9	7
89	Report on the "International Workshop on Climate and Environmental Evolution in the Mesozoic Greenhouse World and 3rd IGCP 609 Workshop on Cretaceous Sea-Level Change". Episodes, 2016, 39, 616-618.	0.8	2
90	A quantitative look on northwestern Tethyan foraminiferal assemblages, Campanian Nierental Formation, Austria. PeerJ, 2016, 4, e1757.	0.9	8

#	Article	IF	CITATIONS
91	A geological snapshot from the front of the Northern Calcareous Alps: Well Obermoos TH-1, Salzburg, Austria. Austrian Journal of Earth Sciences, 2016, 109, .	0.9	0
92	Colonization of the Americas, â€~Little Ice Age' climate, and bomb-produced carbon: Their role in defining the Anthropocene. Infrastructure Asset Management, 2015, 2, 117-127.	1.2	57
93	When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. Quaternary International, 2015, 383, 196-203.	0.7	546
94	Lithostratigraphy of the Late Miocene to Early Pleistocene, hominid-bearing Galili Formation, Southern Afar Depression, Ethiopia. Austrian Journal of Earth Sciences, 2015, 108, 105-127.	0.9	1
95	Timing of the Middle Miocene Badenian Stage of the Central Paratethys. Geologica Carpathica, 2014, 65, 55-66.	0.2	106
96	Palaeoecological and post-depositional changes recorded in Campanian–Maastrichtian black shales, Abu Tartur plateau, Egypt. Cretaceous Research, 2014, 50, 38-51.	0.6	19
97	Base and New Definition of the Lower Badenian and the Age of the Badenian Stratotype (Middle) Tj ETQq1 1 0.78	34314 rgB 0.2	T /Overlock
98	Do Old Mining Waste Deposits from Austria Define an "Old―Anthropocene?. Springer Geology, 2014, , 981-982.	0.2	1
99	Astronomically Calibrated Timing, Mineralogy, and Geochemistry of the Upper Campanian Planktonic Foraminifer Radotruncana Calcarata Zone. Springer Geology, 2014, , 221-223.	0.2	0
100	Provenance of the Upper Cretaceous to Eocene Gosau Group around and beneath the Vienna Basin (Austria and Slovakia). Swiss Journal of Geosciences, 2013, 106, 505-527.	0.5	21
101	Geochemistry of fine-grained sediments of the upper Cretaceous to Paleogene Gosau Group (Austria,) Tj ETQq1 1 449-468.	0.78431 4.3	4 rgBT /Over 69
102	Microfacies analysis and paleoenvironmental significance of palustrine carbonates in the Thakkhola-Mustang Graben (Nepal Himalaya). Journal of Asian Earth Sciences, 2013, 77, 117-126.	1.0	3
103	Carbon, oxygen and strontium isotopes as a tool to decipher marine and non-marine environments: Implications from a case study of cyclic Upper Cretaceous sediments. Geological Society Special Publication, 2013, 382, 123-141.	0.8	7
104	Organic-walled dinoflagellate cyst biostratigraphy of the Well Höflein 6 in the Cretaceous–Paleogene Rhenodanubian Flysch Zone (Vienna Basin, Austria). Geologica Carpathica, 2013, 64, 209-230m.	0.2	18
105	Strikeâ€slip tectonics and Quaternary basin formation along the Vienna Basin fault system inferred from Bouguer gravity derivatives. Tectonics, 2012, 31, .	1.3	25
106	Biostratigraphy and paleoenvironments in a northwestern Tethyan Cenomanian-Turonian boundary section (Austria) based on palynology and calcareous nannofossils. Cretaceous Research, 2012, 38, 103-112.	0.6	11
107	Nannofossil biostratigraphy, strontium and carbon isotope stratigraphy, cyclostratigraphy and an astronomically calibrated duration of the Late Campanian Radotruncana calcarata Zone. Cretaceous Research, 2012, 38, 80-96.	0.6	33
108	Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretaceous Research, 2012, 38, 1-6.	0.6	65

#	Article	IF	CITATIONS
109	"OAE 3" – regional Atlantic organic carbon burial during the Coniacian–Santonian. Climate of the Past, 2012, 8, 1447-1455.	1.3	77

Time calibration of sedimentary sections based on insolation cycles using combined cross-correlation: dating the gone Badenian stratotype (Middle Miocene, Paratethys, Vienna Basin,) Tj ETQq0 0 0 rg 10 / Overlæek 10 Tf 5

111	Cretaceous oceanic red beds as possible consequence of oceanic anoxic events. Sedimentary Geology, 2011, 235, 27-37.	1.0	83
112	Provenance evolution of collapse graben fill in the Himalaya—The Miocene to Quaternary Thakkhola-Mustang Graben (Nepal). Sedimentary Geology, 2011, 233, 1-14.	1.0	20
113	Geochemistry of Cretaceous Oceanic Red Beds — A synthesis. Sedimentary Geology, 2011, 235, 72-78.	1.0	18
114	Causes of oxic–anoxic changes in Cretaceous marine environments and their implications for Earth systems—An introduction. Sedimentary Geology, 2011, 235, 1-4.	1.0	22
115	Analysis of the Gosau Group (Upper Cretaceous-Paleogene) from the Vienna Basin Basement and Outcrop Analogues in Austria. , 2011, , .		0
116	Geochemical Correlation of Limnic-marine Upper Cretaceous Successions Underneath the Vienna Basin (Gosau Group, Austria). , 2011, , .		0
117	High resolution stratigraphy of the Jurassic-Cretaceous boundary interval in the Gresten Klippenbelt (Austria). Geologica Carpathica, 2010, 61, 365-381.	0.2	47
118	Paleoceanographic changes at the northern Tethyan margin during the Cenomanian–Turonian Oceanic Anoxic Event (OAE-2). Marine Micropaleontology, 2010, 77, 25-45.	0.5	57
119	Lower Miocene structural evolution of the central Vienna Basin (Austria). Marine and Petroleum Geology, 2010, 27, 666-681.	1.5	44
120	Climate as main factor controlling the sequence development of two Pleistocene alluvial fans in the Vienna Basin (eastern Austria) — A numerical modelling approach. Geomorphology, 2010, 115, 215-227.	1.1	30
121	High-resolution mapping of glacial landforms in the North Alpine Foreland, Austria. Geomorphology, 2010, 122, 283-293.	1.1	28
122	Late Santonian bioevents in the Schattau section, Gosau Group of Austria – implications for the Santonian–Campanian boundary stratigraphy. Cretaceous Research, 2010, 31, 181-191.	0.6	22
123	Climate and tectonic controls on Pleistocene sequence development and river evolution in the Southern Vienna Basin (Austria). Quaternary International, 2010, 222, 154-167.	0.7	18
124	Cyclostratigraphic dating in the Lower Badenian (Middle Miocene) of the Vienna Basin (Austria): the Baden-Sooss core. International Journal of Earth Sciences, 2009, 98, 915-930.	0.9	35
125	Karst morphology and groundwater vulnerability of high alpine karst plateaus. Environmental Geology, 2009, 58, 285-297.	1.2	32
126	Upper bathyal trace fossils document palaeoclimate changes. Terra Nova, 2009, 21, 229-236.	0.9	3

#	Article	IF	CITATIONS
127	Introduction to Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins, and Paleoceanographic and Paleoclimatic Significance. , 2009, , 7-10.		2
128	Overview of Cretaceous Oceanic Red Beds (CORBs): A Window on Global Oceanic and Climate Change. , 2009, , 13-33.		14
129	Cretaceous Oceanic Red Beds (CORBs) in the Austrian Eastern Alps: Passive-Margin vs. Active-Margin Depositional Settings. , 2009, , 73-88.		4
130	Stratigraphic Constraints on Climate Control of Lower Cretaceous Oceanic Red Beds in the Northern Calcareous Alps (Austria). , 2009, , 91-98.		3
131	Coniacian–Santonian Oceanic Red Beds and Their Link to Oceanic Anoxic Event 3. , 2009, , 235-242.		8
132	Cretaceous Oceanic Red Beds from the Pindos Basin of Greece: Long-Term Siliceous Pelagic Deposition Punctuated by Anoxia. , 2009, , 137-143.		1
133	Productivity Fluctuations and Orbital Cyclicity During Onset of Early to Middle Turonian Marine Red-Bed Formation (Austrian Eastern Alps). , 2009, , 209-221.		3
134	Geochemical Characterization of Santonian Cyclic Oceanic Red Beds in the Alpine Tethys (Rehkogelgraben Section, Austria). , 2009, , 199-207.		3
135	DeCompactionTool: Software for subsidence analysis including statistical error quantification. Computers and Geosciences, 2008, 34, 1454-1460.	2.0	22
136	Calcareous nannoplankton, planktonic foraminiferal, and carbonate carbon isotope stratigraphy of the Cenomanian–Turonian boundary section in the Ultrahelvetic Zone (Eastern Alps, Upper Austria). Cretaceous Research, 2008, 29, 965-975.	0.6	21
137	Turonian Oceanic Red Beds in the Eastern Alps: Concepts for palaeoceanographic changes in the Mediterranean Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 251, 222-238.	1.0	43
138	Biostratigraphy of the lower red shale interval in the Rhenodanubian Flysch Zone of Austria. Cretaceous Research, 2006, 27, 743-753.	0.6	11
139	Numerical modelling of clast rotation during soft-sediment deformation: a case study in Miocene delta deposits. International Journal of Earth Sciences, 2006, 95, 921-928.	0.9	5
140	Source area and tectonic control on alluvial-fan development in the Miocene Fohnsdorf intramontane basin, Austria. Geological Society Special Publication, 2005, 251, 207-216.	0.8	14
141	Upper Cretaceous oceanic red beds (CORBs) in the Tethys: occurrences, lithofacies, age, and environments. Cretaceous Research, 2005, 26, 3-20.	0.6	133
142	Upper Cretaceous oceanic red beds (CORB) in the Northern Calcareous Alps (Nierental Formation,) Tj ETQq0 0 0 2005, 26, 57-64.	rgBT /Ove 0.6	erlock 10 Tf 50 57
143	3-D mapping of segmented active faults in the southern Vienna Basin. Quaternary Science Reviews, 2005, 24, 321-336.	1.4	43
144	Correlation of calcareous nannofossil zones to the local first occurrence of Pachydiscus neubergicus (von Hauer, 1858) (Ammonoidea) in European Upper Cretaceous sections. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2003, 82, 283-288.	0.6	9

#	Article	IF	CITATIONS
14	Middle Jurassic stromatactis mud-mound in the Pieniny Klippen Belt (Western Carpathians). Facies, 2002, 47, 113-126.	0.7	17
140	Backstripping dip-slip fault histories: apparent slip rates for the Miocene of the Vienna Basin. Terra Nova, 2002, 14, 163-168.	0.9	33
147	The Mesozoic amber of Schliersee (southern Germany) is Cretaceous in age. Cretaceous Research, 2001, 22, 423-428.	0.6	41
148	Chapter E3 The Campanian-Maastrichtian boundary in northern Spain (Navarra province): The Imiscoz and Erro sections. Developments in Palaeontology and Stratigraphy, 2001, 19, 723-744.	0.1	5
149	7 Tectonics and sedimentation in the Fohnsdorf-Seckau Basin (Miocene, Austria): from a pull-apart basin to a half-graben. International Journal of Earth Sciences, 2001, 90, 549-559.	0.9	27
150	Sedimentary tectonics and subsidence modelling of the type Upper Cretaceous Gosau basin (Northern) Tj ETQ	q0 0 0 rgBT	/Oyerlock 10
15	A 400-km-long piggyback basin (Upper Aptian-Lower Cenomanian) in the Eastern Alps. Terra Nova, 2001, 13, 401-406.	0.9	28
15:	The Neogene Fohnsdorf Basin: basin formation and basin inversion during lateral extrusion in the Eastern Alps (Austria). International Journal of Earth Sciences, 2000, 89, 415-430.	0.9	29
15	Pre-Tertiary blueschist terrains in the Hellenides: evidence from detrital minerals of flysch successions. Terra Nova, 1996, 8, 186-190.	0.9	12
154	Age and significance of Upper Cretaceous siliciclastic turbidites in the central Pindos Mountains, Greece. Geological Magazine, 1996, 133, 325-331.	0.9	16
15	Late Cretaceous to Early Tertiary palaeogeography of the Western Carpathians (Slovakia) and the Eastern Alps (Austria): implications from heavy mineral data. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1995, 84, 187.	1.3	29
150	Subduction tectonic erosion and Late Cretaceous subsidence along the northern Austroalpine margin (Eastern Alps, Austria). Tectonophysics, 1995, 242, 63-78.	0.9	81
157	Palaeogeography and geodynamic evolution of the Gosau Group of the Northern Calcareous Alps (Late Cretaceous, Eastern Alps, Austria). Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 110, 235-254.	1.0	97
158	Subcrustal tectonic erosion in orogenic belts-—A model for the Late Cretaceous subsidence of the Northern Calcareous Alps (Austria): Comment and Reply. Geology, 1994, 22, 855.	2.0	3
159	Subcrustal tectonic erosion in orogenic belts— A model for the Late Cretaceous subsidence of the Northern Calcareous Alps (Austria). Geology, 1993, 21, 941.	2.0	50
16	Correlation of late Cretaceous calcareous nannofossil zones with ammonite zones and planktonic Foraminifera: the Austrian Gosau sections. Cretaceous Research, 1992, 13, 505-516.	0.6	28
16	Cretaceous flysch and pelagic sequences of the Eastern Alps: correlations, heavy minerals, and palaeogeographic implications. Cretaceous Research, 1992, 13, 387-403.	0.6	37
	A review of low latitude affectathy and frequence appropriation accompliance of the Cretacoous 1002		

A review of low-latitude "Tethyan―calcareous nannoplankton assemblages of the Cretaceous. , 1992, ,
45-55.

#	Article	IF	CITATIONS
163	Coarsening-upward fan-delta sequences in the Lower Streiteck Formation (Santonian) of the Gosau Group near Gosau (Upper Austria). Neues Jahrbuch Für Geologie Und PalÃ ¤ ntologie, 1989, 1989, 47-64.	0.3	5