
Huaying Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6619746/publications.pdf Version: 2024-02-01

ΗΠΑΧΙΝΟ ΖΗΛΟ

#	Article	IF	CITATIONS
1	High-Precision Isothermal Titration Calorimetry with Automated Peak-Shape Analysis. Analytical Chemistry, 2012, 84, 5066-5073.	6.5	440
2	On the Distribution of Protein Refractive Index Increments. Biophysical Journal, 2011, 100, 2309-2317.	0.5	410
3	SEDPHAT $\hat{a} \in$ A platform for global ITC analysis and global multi-method analysis of molecular interactions. Methods, 2015, 76, 137-148.	3.8	264
4	Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions. Nature Protocols, 2016, 11, 882-894.	12.0	225
5	Higherâ€order oligomerization promotes localization of <scp>SPOP</scp> to liquid nuclear speckles. EMBO Journal, 2016, 35, 1254-1275.	7.8	172
6	Overview of Current Methods in Sedimentation Velocity and Sedimentation Equilibrium Analytical Ultracentrifugation. Current Protocols in Protein Science, 2013, 71, Unit20.12.	2.8	154
7	Combining biophysical methods for the analysis of protein complex stoichiometry and affinity in <i>SEDPHAT</i> . Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 3-14.	2.5	139
8	Recorded scan times can limit the accuracy of sedimentation coefficients in analytical ultracentrifugation. Analytical Biochemistry, 2013, 437, 104-108.	2.4	102
9	Structure of mouse protocadherin 15 of the stereocilia tip link in complex with LHFPL5. ELife, 2018, 7, .	6.0	73
10	A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation. PLoS ONE, 2015, 10, e0126420.	2.5	71
11	Basic Principles of Analytical Ultracentrifugation. , O, , .		69
12	The Molecular Refractive Function of Lens γ-Crystallins. Journal of Molecular Biology, 2011, 411, 680-699.	4.2	68
13	An allosteric site in the T-cell receptor Cβ domain plays a critical signalling role. Nature Communications, 2017, 8, 15260.	12.8	64
14	Improving the thermal, radial, and temporal accuracy of the analytical ultracentrifuge through external references. Analytical Biochemistry, 2013, 440, 81-95.	2.4	60
15	Role of humoral immunity against hepatitis B virus core antigen in the pathogenesis of acute liver failure. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11369-E11378.	7.1	59
16	A comparison of binding surfaces for SPR biosensing using an antibody–antigen system and affinity distribution analysis. Methods, 2013, 59, 328-335.	3.8	52
17	Global Multi-Method Analysis of Affinities and Cooperativity in Complex Systems of Macromolecular Interactions. Analytical Chemistry, 2012, 84, 9513-9519.	6.5	48
18	Measuring macromolecular size distributions and interactions at high concentrations by sedimentation velocity. Nature Communications, 2018, 9, 4415.	12.8	48

HUAYING ZHAO

#	Article	IF	CITATIONS
19	Analysis of high-affinity assembly for AMPA receptor amino-terminal domains. Journal of General Physiology, 2012, 139, 371-388.	1.9	45
20	Analysis of Protein Interactions with Picomolar Binding Affinity by Fluorescence-Detected Sedimentation Velocity. Analytical Chemistry, 2014, 86, 3181-3187.	6.5	41
21	Use of fluorescence-detected sedimentation velocity to study high-affinity protein interactions. Nature Protocols, 2017, 12, 1777-1791.	12.0	37
22	Plasticity in structure and assembly of SARS-CoV-2 nucleocapsid protein. , 2022, 1, .		36
23	The boundary structure in the analysis of reversibly interacting systems by sedimentation velocity. Methods, 2011, 54, 16-30.	3.8	35
24	Energetic and structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids. IScience, 2021, 24, 102523.	4.1	34
25	The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index. Physical Biology, 2011, 8, 046004.	1.8	31
26	Analysis of High Affinity Self-Association by Fluorescence Optical Sedimentation Velocity Analytical Ultracentrifugation of Labeled Proteins: Opportunities and Limitations. PLoS ONE, 2013, 8, e83439.	2.5	31
27	Solution properties of γâ€crystallins: Hydration of fish and mammal γâ€crystallins. Protein Science, 2014, 23, 88-99.	7.6	30
28	Tools for the Quantitative Analysis of Sedimentation Boundaries Detected by Fluorescence Optical Analytical Ultracentrifugation. PLoS ONE, 2013, 8, e77245.	2.5	27
29	3D-Printing for Analytical Ultracentrifugation. PLoS ONE, 2016, 11, e0155201.	2.5	27
30	Accounting for Solvent Signal Offsets in the Analysis of Interferometric Sedimentation Velocity Data. Macromolecular Bioscience, 2010, 10, 736-745.	4.1	26
31	Variable Field Analytical Ultracentrifugation: II. Gravitational Sweep Sedimentation Velocity. Biophysical Journal, 2016, 110, 103-112.	0.5	25
32	Preferential assembly of heteromeric kainate and AMPA receptor amino terminal domains. ELife, 2017, 6,	6.0	25
33	Cooperative assembly of a four-molecule signaling complex formed upon T cell antigen receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11914-E11923.	7.1	24
34	Measuring Ultra-Weak Protein Self-Association by Non-ideal Sedimentation Velocity. Journal of the American Chemical Society, 2019, 141, 2990-2996.	13.7	22
35	Improved measurement of the rotor temperature in analytical ultracentrifugation. Analytical Biochemistry, 2014, 451, 69-75.	2.4	20
36	Enhanced Sample Handling for Analytical Ultracentrifugation with 3D-Printed Centerpieces. Analytical Chemistry, 2019, 91, 5866-5873.	6.5	16

HUAYING ZHAO

#	Article	IF	CITATIONS
37	Nucleic acid–induced dimerization of HIV-1 Gag protein. Journal of Biological Chemistry, 2019, 294, 16480-16493.	3.4	15
38	Measurement of the temperature of the resting rotor in analytical ultracentrifugation. Analytical Biochemistry, 2014, 458, 37-39.	2.4	14
39	A histogram approach to the quality of fit in sedimentation velocity analyses. Analytical Biochemistry, 2015, 483, 1-3.	2.4	14
40	Measuring aggregates, self-association, and weak interactions in concentrated therapeutic antibody solutions. MAbs, 2020, 12, 1810488.	5.2	14
41	Variable-Field Analytical Ultracentrifugation: I. Time-Optimized Sedimentation Equilibrium. Biophysical Journal, 2015, 109, 827-837.	0.5	12
42	Ultrasmall Gold Nanoparticles Coated with Zwitterionic Glutathione Monoethyl Ester: A Model Platform for the Incorporation of Functional Peptides. Journal of Physical Chemistry B, 2020, 124, 3892-3902.	2.6	12
43	A multi-laboratory benchmark study of isothermal titration calorimetry (ITC) using Ca2+ and Mg2+ binding to EDTA. European Biophysics Journal, 2021, 50, 429-451.	2.2	12
44	Accounting for Photophysical Processes and Specific Signal Intensity Changes in Fluorescence-Detected Sedimentation Velocity. Analytical Chemistry, 2014, 86, 9286-9292.	6.5	11
45	Competing stress-dependent oligomerization pathways regulate self-assembly of the periplasmic protease-chaperone DegP. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
46	Monochromatic multicomponent fluorescence sedimentation velocity for the study of high-affinity protein interactions. ELife, 2016, 5, .	6.0	11
47	Biocalorimetry. Methods, 2015, 76, 1-2.	3.8	9
48	Sedimentation of Reversibly Interacting Macromolecules with Changes in Fluorescence Quantum Yield. Biophysical Journal, 2017, 112, 1374-1382.	0.5	8
49	A radial calibration window for analytical ultracentrifugation. PLoS ONE, 2018, 13, e0201529.	2.5	8
50	Quantitative Analysis of Protein Selfâ€Association by Sedimentation Velocity. Current Protocols in Protein Science, 2020, 101, e109.	2.8	8
51	Global multi-method analysis of interaction parameters for reversibly self-associating macromolecules at high concentrations. Scientific Reports, 2021, 11, 5741.	3.3	7
52	Characterization of DNA–protein complexes by nanoparticle tracking analysis and their association with systemic lupus erythematosus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
53	Mechanistic Implications of the Unique Structural Features and Dimerization of the Cytoplasmic Domain of the <i>Pseudomonas</i> Sigma Regulator, PupR. Biochemistry, 2015, 54, 5867-5877.	2.5	6
54	Efficient data acquisition with three-channel centerpieces in sedimentation velocity. Analytical Biochemistry, 2019, 586, 113414.	2.4	5

HUAYING ZHAO

#	Article	IF	CITATIONS
55	Distinct disease features in chimpanzees infected with a precore HBV mutant associated with acute liver failure in humans. PLoS Pathogens, 2020, 16, e1008793.	4.7	4
56	Calibrating analytical ultracentrifuges. European Biophysics Journal, 2021, 50, 353-362.	2.2	4
57	Resuspending samples in analytical ultracentrifugation. Analytical Biochemistry, 2020, 604, 113771.	2.4	2
58	Macromol. Biosci. 7/2010. Macromolecular Bioscience, 2010, 10, .	4.1	0
59	Mechanistic Implications of the Unique Structural Features of the Anti‣igma Domain of the Pseudomonas Sigma Regulator, PupR. FASEB Journal, 2016, 30, 1118.3.	0.5	0