
Shankar Varadarajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6619743/publications.pdf Version: 2024-02-01

SHANKAD VADADADAIAN

#	Article	IF	CITATIONS
1	Bacterial glycoproteins: Functions, biosynthesis and applications. Proteomics, 2003, 3, 363-379.	2.2	155
2	Evaluation and critical assessment of putative MCL-1 inhibitors. Cell Death and Differentiation, 2013, 20, 1475-1484.	11.2	92
3	BH3-only proteins are dispensable for apoptosis induced by pharmacological inhibition of both MCL-1 and BCL-XL. Cell Death and Differentiation, 2019, 26, 1037-1047.	11.2	56
4	Drosophila Omi, a mitochondrial-localized IAP antagonist and proapoptotic serine protease. EMBO Journal, 2007, 26, 3144-3156.	7.8	51
5	Sabutoclax (BI97C1) and BI112D1, Putative Inhibitors of MCL-1, Induce Mitochondrial Fragmentation Either Upstream of or Independent of Apoptosis. Neoplasia, 2013, 15, 568-IN22.	5.3	42
6	Maritoclax and dinaciclib inhibit MCL-1 activity and induce apoptosis in both a MCL-1-dependent and -independent manner. Oncotarget, 2015, 6, 12668-12681.	1.8	40
7	TRAIL-activated stress kinases suppress apoptosis through transcriptional upregulation of MCL-1. Cell Death and Differentiation, 2010, 17, 1288-1301.	11.2	36
8	BH3 profiling and a toolkit of BH3-mimetic drugs predict anti-apoptotic dependence of cancer cells. British Journal of Cancer, 2016, 114, 638-641.	6.4	30
9	DRP-1 is required for BH3 mimetic-mediated mitochondrial fragmentation and apoptosis. Cell Death and Disease, 2018, 8, e2552-e2552.	6.3	29
10	High CIP2A levels correlate with an antiapoptotic phenotype that can be overcome by targeting BCL-XL in chronic myeloid leukemia. Leukemia, 2016, 30, 1273-1281.	7.2	25
11	Endoplasmic Reticulum Membrane Reorganization Is Regulated by Ionic Homeostasis. PLoS ONE, 2013, 8, e56603.	2.5	25
12	DRP-1 functions independently of mitochondrial structural perturbations to facilitate BH3 mimetic-mediated apoptosis. Cell Death Discovery, 2019, 5, 117.	4.7	19
13	Exploring the potential of BH3 mimetic therapy in squamous cell carcinoma of the head and neck. Cell Death and Disease, 2019, 10, 912.	6.3	18
14	The transrepression arm of glucocorticoid receptor signaling is protective in mutant huntingtin-mediated neurodegeneration. Cell Death and Differentiation, 2015, 22, 1388-1396.	11.2	17
15	Targeting intermediary metabolism enhances the efficacy of BH3 mimetic therapy in hematologic malignancies. Haematologica, 2019, 104, 1016-1025.	3.5	14
16	Apogossypol-mediated reorganisation of the endoplasmic reticulum antagonises mitochondrial fission and apoptosis. Cell Death and Disease, 2019, 10, 521.	6.3	8
17	STINGing Viral Tumors: What We Know from Head and Neck Cancers. Cancer Research, 2021, 81, 3945-3952.	0.9	8
18	Selective BH3-mimetics targeting BCL-2, BCL-X _L or MCL-1 induce severe mitochondrial perturbations. Biological Chemistry, 2019, 400, 181-185.	2.5	8

#	Article	IF	CITATIONS
19	Novel roles of RTN4 and CLIMP-63 in regulating mitochondrial structure, bioenergetics and apoptosis. Cell Death and Disease, 2022, 13, 436.	6.3	7
20	The small molecule dispergo tubulates the endoplasmic reticulum and inhibits export. Molecular Biology of the Cell, 2013, 24, 1020-1029.	2.1	6
21	HPV16 E1 dysregulated cellular genes involved in cell proliferation and host DNA damage: A possible role in cervical carcinogenesis. PLoS ONE, 2021, 16, e0260841.	2.5	4
22	PO-028 Effective targeting of NAD+biosynthesis in patient-derived xenograft models of high-risk paediatric acute lymphoblastic leukaemia. ESMO Open, 2018, 3, A238.	4.5	1