
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6619548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial "pan-genome". Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13950-13955.	3.3	2,161
2	cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 14648-14653.	3.3	1,801
3	Identification of Vaccine Candidates Against Serogroup B Meningococcus by Whole-Genome Sequencing. Science, 2000, 287, 1816-1820.	6.0	1,258
4	The microbial pan-genome. Current Opinion in Genetics and Development, 2005, 15, 589-594.	1.5	1,151
5	Complete Genome Sequence of Neisseria meningitidis Serogroup B Strain MC58. Science, 2000, 287, 1809-1815.	6.0	1,083
6	Helicobacter pylori Virulence and Genetic Geography. Science, 1999, 284, 1328-1333.	6.0	998
7	An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nature Medicine, 2004, 10, 871-875.	15.2	679
8	A universal vaccine for serogroup B meningococcus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10834-10839.	3.3	657
9	Reverse vaccinology. Current Opinion in Microbiology, 2000, 3, 445-450.	2.3	610
10	Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science, 1995, 267, 1655-1658.	6.0	603
11	Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1263-1268.	3.3	551
12	Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infection and Immunity, 1995, 63, 94-98.	1.0	547
13	Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5115-5120.	3.3	521
14	Nonviral delivery of self-amplifying RNA vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14604-14609.	3.3	498
15	Identification of a Universal Group B Streptococcus Vaccine by Multiple Genome Screen. Science, 2005, 309, 148-150.	6.0	497
16	SARS — beginning to understand a new virus. Nature Reviews Microbiology, 2003, 1, 209-218.	13.6	469
17	Correlates of adjuvanticity: A review on adjuvants in licensed vaccines. Seminars in Immunology, 2018, 39, 14-21.	2.7	455
18	Living dangerously: how Helicobacter pylori survives in the human stomach. Nature Reviews Molecular Cell Biology, 2001, 2, 457-466.	16.1	447

RINO RAPPUOLI

#	Article	IF	CITATIONS
19	Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12391-12396.	3.3	447
20	Molecular and cellular signatures of human vaccine adjuvants. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10501-10506.	3.3	423
21	Reverse Vaccinology: Developing Vaccines in the Era of Genomics. Immunity, 2010, 33, 530-541.	6.6	422
22	A novel glyco-conjugate vaccine against fungal pathogens. Journal of Experimental Medicine, 2005, 202, 597-606.	4.2	409
23	A pneumococcal pilus influences virulence and host inflammatory responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2857-2862.	3.3	395
24	c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Molecular Microbiology, 2002, 43, 971-980.	1.2	393
25	Vaccination against Neisseria meningitidis Using Three Variants of the Lipoprotein GNA1870. Journal of Experimental Medicine, 2003, 197, 789-799.	4.2	388
26	Pili in Gram-positive pathogens. Nature Reviews Microbiology, 2006, 4, 509-519.	13.6	388
27	Reverse vaccinology, a genome-based approach to vaccine development. Vaccine, 2001, 19, 2688-2691.	1.7	381
28	Filamentous hemagglutinin of Bordetella pertussis: nucleotide sequence and crucial role in adherence Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 2637-2641.	3.3	368
29	Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 4631-4635.	3.3	358
30	New adjuvants for human vaccines. Current Opinion in Immunology, 2010, 22, 411-416.	2.4	352
31	Vaccines for the 21st century. EMBO Molecular Medicine, 2014, 6, 708-720.	3.3	342
32	Mutants of pertussis toxin suitable for vaccine development. Science, 1989, 246, 497-500.	6.0	341
33	NadA, a Novel Vaccine Candidate of Neisseria meningitidis. Journal of Experimental Medicine, 2002, 195, 1445-1454.	4.2	337
34	Vaccines for the twenty-first century society. Nature Reviews Immunology, 2011, 11, 865-872.	10.6	328
35	Microbiology in the post-genomic era. Nature Reviews Microbiology, 2008, 6, 419-430.	13.6	324
36	The new multicomponent vaccine against meningococcal serogroup B, 4CMenB: Immunological, functional and structural characterization of the antigens. Vaccine, 2012, 30, B87-B97	1.7	309

#	Article	IF	CITATIONS
37	Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6671-6675.	3.3	306
38	MF59 Adjuvant Enhances Diversity and Affinity of Antibody-Mediated Immune Response to Pandemic Influenza Vaccines. Science Translational Medicine, 2011, 3, 85ra48.	5.8	304
39	Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. Journal of Experimental Medicine, 2016, 213, 469-481.	4.2	299
40	Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1644-1648.	3.3	298
41	Vaccine manufacturing: challenges and solutions. Nature Biotechnology, 2006, 24, 1377-1383.	9.4	288
42	The Neutrophil-Activating Protein (Hp-Nap) of Helicobacter pylori Is a Protective Antigen and a Major Virulence Factor. Journal of Experimental Medicine, 2000, 191, 1467-1476.	4.2	279
43	Genome Analysis Reveals Pili in Group B Streptococcus. Science, 2005, 309, 105-105.	6.0	278
44	Hemagglutination Inhibition Antibody Titers as a Correlate of Protection for Inactivated Influenza Vaccines in Children. Pediatric Infectious Disease Journal, 2011, 30, 1081-1085.	1.1	277
45	Group B Streptococcus: global incidence and vaccine development. Nature Reviews Microbiology, 2006, 4, 932-942.	13.6	272
46	Mucosal Adjuvanticity and Immunogenicity of LTR72, a Novel Mutant of Escherichia coli Heat-labile Enterotoxin with Partial Knockout of ADP-ribosyltransferase Activity. Journal of Experimental Medicine, 1998, 187, 1123-1132.	4.2	270
47	Selective Inhibition of Ii-dependent Antigen Presentation by Helicobacter pylori Toxin VacA. Journal of Experimental Medicine, 1998, 187, 135-140.	4.2	270
48	Qualitative and quantitative assessment of meningococcal antigens to evaluate the potential strain coverage of protein-based vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19490-19495.	3.3	267
49	Self-assembling protein nanoparticles in the design of vaccines. Computational and Structural Biotechnology Journal, 2016, 14, 58-68.	1.9	266
50	Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment. Lancet Infectious Diseases, The, 2013, 13, 416-425.	4.6	261
51	Transient Facial Nerve Paralysis (Bell's Palsy) following Intranasal Delivery of a Genetically Detoxified Mutant of Escherichia coli Heat Labile Toxin. PLoS ONE, 2009, 4, e6999.	1.1	260
52	The history of MF59 [®] adjuvant: a phoenix that arose from the ashes. Expert Review of Vaccines, 2013, 12, 13-30.	2.0	254
53	Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature, 2021, 594, 253-258.	13.7	253
54	SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	251

#	Article	IF	CITATIONS
55	The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Research, 1984, 12, 4063-4069.	6.5	247
56	Adjuvanted H5N1 vaccine induces early CD4 ⁺ T cell response that predicts long-term persistence of protective antibody levels. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3877-3882.	3.3	242
57	Vaccines with MF59 Adjuvant Expand the Antibody Repertoire to Target Protective Sites of Pandemic Avian H5N1 Influenza Virus. Science Translational Medicine, 2010, 2, 15ra5.	5.8	242
58	Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO Journal, 1999, 18, 5517-5527.	3.5	240
59	Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes. Journal of Bacteriology, 1987, 169, 2847-2853.	1.0	239
60	Vaccines, new opportunities for a new society. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12288-12293.	3.3	237
61	A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature, 2011, 473, 463-469.	13.7	236
62	Counterselectable Markers: Untapped Tools for Bacterial Genetics and Pathogenesis. Infection and Immunity, 1998, 66, 4011-4017.	1.0	234
63	Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9619-9624.	3.3	233
64	The role of vaccines in combatting antimicrobial resistance. Nature Reviews Microbiology, 2021, 19, 287-302.	13.6	233
65	Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9720-9724.	3.3	232
66	Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Molecular Microbiology, 2000, 37, 207-215.	1.2	231
67	Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9072-9077.	3.3	222
68	Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin Journal of Clinical Investigation, 1998, 102, 813-820.	3.9	221
69	Invariant NKT cells sustain specific B cell responses and memory. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3984-3989.	3.3	213
70	Induction of antigen-specific antibodies in vaginal secretions by using a nontoxic mutant of heat-labile enterotoxin as a mucosal adjuvant. Infection and Immunity, 1996, 64, 974-979.	1.0	213
71	Role of the Helicobacter pylori virulence factors vacuolating cytotoxin, CagA, and urease in a mouse model of disease. Infection and Immunity, 1995, 63, 4154-4160.	1.0	207
72	THEDESIGN OFVACCINESAGAINSTHELICOBACTER PYLORIANDTHEIRDEVELOPMENT. Annual Review of Immunology, 2001, 19, 523-563.	9.5	206

#	Article	IF	CITATIONS
73	Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Molecular Microbiology, 2004, 55, 687-698.	1.2	206
74	Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Science Translational Medicine, 2015, 7, 294ra105.	5.8	206
75	Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nature Biotechnology, 2002, 20, 914-921.	9.4	205
76	<i>Helicobacter pylori</i> cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9238-9243.	3.3	205
77	Alum adjuvanticity: Unraveling a century old mystery. European Journal of Immunology, 2008, 38, 2068-2071.	1.6	204
78	The small GTP binding protein rab7 is essential for cellular vacuolation induced by Helicobacter pylori cytotoxin. EMBO Journal, 1997, 16, 15-24.	3.5	203
79	<i>Neisseria meningitidis</i> is structured in clades associated with restriction modification systems that modulate homologous recombination. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4494-4499.	3.3	198
80	Low pH Activates the Vacuolating Toxin of Helicobacter pylori, Which Becomes Acid and Pepsin Resistant. Journal of Biological Chemistry, 1995, 270, 23937-23940.	1.6	197
81	Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9542-9547.	3.3	191
82	Rapidly produced SAM [®] vaccine against H7N9 influenza is immunogenic in mice. Emerging Microbes and Infections, 2013, 2, 1-7.	3.0	189
83	Families of bacterial signal-transducing proteins. Molecular Microbiology, 1989, 3, 1661-1667.	1.2	187
84	From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nature Reviews Immunology, 2014, 14, 505-514.	10.6	185
85	Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin Journal of Cell Biology, 1996, 133, 801-807.	2.3	184
86	The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10212-10217.	3.3	184
87	The Key Role of Genomics in Modern Vaccine and Drug Design for Emerging Infectious Diseases. PLoS Genetics, 2009, 5, e1000612.	1.5	184
88	<i>Neisseria meningitidis</i> GNA2132, a heparin-binding protein that induces protective immunity in humans. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3770-3775.	3.3	184
89	Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021, 184, 1821-1835.e16.	13.5	180
90	Changing Priorities in Vaccinology: Antibiotic Resistance Moving to the Top. Frontiers in Immunology, 2018, 9, 1068.	2.2	179

6

#	Article	IF	CITATIONS
91	Systems biology of immunity to MF59-adjuvanted versus nonadjuvanted trivalent seasonal influenza vaccines in early childhood. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1853-1858.	3.3	176
92	Vacuoles Induced by Helicobacter pylori Toxin Contain Both Late Endosomal and Lysosomal Markers. Journal of Biological Chemistry, 1997, 272, 25339-25344.	1.6	174
93	Cellular Microbiology Emerging. Science, 1996, 271, 315-316.	6.0	169
94	Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Molecular Microbiology, 2004, 52, 1081-1090.	1.2	168
95	Neisseria meningitidis group B correlates of protection and assay standardization—International Meeting Report Emory University, Atlanta, Georgia, United States, 16–17 March 2005. Vaccine, 2006, 24, 5093-5107.	1.7	168
96	Mucosal Administration of Ag85B-ESAT-6 Protects against Infection with <i>Mycobacterium tuberculosis</i> and Boosts Prior Bacillus Calmette-Guel̀rin Immunity. Journal of Immunology, 2006, 177, 6353-6360.	0.4	168
97	Bridging the knowledge gaps in vaccine design. Nature Biotechnology, 2007, 25, 1361-1366.	9.4	168
98	Therapeutic intragastric vaccination against Helicobacter pylori in mice eradicates an otherwise chronic infection and confers protection against reinfection. Infection and Immunity, 1997, 65, 4996-5002.	1.0	168
99	Did the inheritance of a pathogenicity island modify the virulence of Helicobacter pylori?. Trends in Microbiology, 1997, 5, 205-208.	3.5	167
100	Tyrosine-Phosphorylated Bacterial Proteins. Journal of Experimental Medicine, 2000, 191, 587-592.	4.2	167
101	The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Molecular Microbiology, 2002, 42, 1297-1309.	1.2	167
102	The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opinion on Drug Discovery, 2011, 6, 1045-1066.	2.5	167
103	Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3680-3685.	3.3	166
104	Synthetic Generation of Influenza Vaccine Viruses for Rapid Response to Pandemics. Science Translational Medicine, 2013, 5, 185ra68.	5.8	164
105	Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin. Infection and Immunity, 1997, 65, 2821-2828.	1.0	162
106	Development and phase 1 clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine, 1992, 10, 691-698.	1.7	161
107	The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Molecular Microbiology, 1999, 34, 238-246.	1.2	159
108	A Second Pilus Type in <i>Streptococcus pneumoniae</i> Is Prevalent in Emerging Serotypes and Mediates Adhesion to Host Cells. Journal of Bacteriology, 2008, 190, 5480-5492.	1.0	159

#	Article	IF	CITATIONS
109	Glycoconjugate vaccines: Principles and mechanisms. Science Translational Medicine, 2018, 10, .	5.8	158
110	MEDICINE: The Intangible Value of Vaccination. Science, 2002, 297, 937-939.	6.0	151
111	Adjuvanticity of the oil-in-water emulsion MF59 is independent of Nlrp3 inflammasome but requires the adaptor protein MyD88. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11169-11174.	3.3	149
112	Influenza vaccine immunology. Immunological Reviews, 2011, 239, 167-177.	2.8	146
113	Helicobacter pylori Vacuolating Toxin Forms Anion-Selective Channels in Planar Lipid Bilayers: Possible Implications for the Mechanism of Cellular Vacuolation. Biophysical Journal, 1999, 76, 1401-1409.	0.2	145
114	Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages. Molecular Microbiology, 1996, 21, 667-674.	1.2	143
115	Structure-based antigen design: a strategy for next generation vaccines. Trends in Biotechnology, 2008, 26, 659-667.	4.9	143
116	RrgA is a pilusâ€associated adhesin in <i>Streptococcus pneumoniae</i> . Molecular Microbiology, 2007, 66, 329-340.	1.2	142
117	Pertussis toxin potentiates Th1 and Th2 responses to co-injected antigen: adjuvant action is associated with enhanced regulatory cytokine production and expression of the co-stimulatory molecules B7- 1, B7-2 and CD28. International Immunology, 1998, 10, 651-662.	1.8	141
118	Technologies to address antimicrobial resistance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12887-12895.	3.3	140
119	Probing the structure-activity relationship of Escherichia coli LT-A by site-directed mutagenesis. Molecular Microbiology, 1994, 14, 51-60.	1.2	137
120	Positive transcriptional feedback at the bvg locus controls expression of virulence factors in Bordetella pertussis Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6753-6757.	3.3	136
121	Rational Design of a Meningococcal Antigen Inducing Broad Protective Immunity. Science Translational Medicine, 2011, 3, 91ra62.	5.8	135
122	Bafilomycin A1 inhibits Helicobacter pylori-induced vacuolization of HeLa cells. Molecular Microbiology, 1993, 7, 323-327.	1.2	134
123	Structure of the Neutrophil-activating Protein from Helicobacter pylori. Journal of Molecular Biology, 2002, 323, 125-130.	2.0	133
124	Emerging infectious diseases: A proactive approach. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4055-4059.	3.3	133
125	Vaccinology in the genome era. Journal of Clinical Investigation, 2009, 119, 2515-2525.	3.9	132
126	Structure-based approach to rationally design a chimeric protein for an effective vaccine against Group B <i>Streptococcus</i> infections. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10278-10283.	3.3	132

#	Article	IF	CITATIONS
127	The use of genomics in microbial vaccine development. Drug Discovery Today, 2009, 14, 252-260.	3.2	131
128	A Crisis of Public Confidence in Vaccines. Science Translational Medicine, 2010, 2, 61mr1.	5.8	131
129	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	13.5	131
130	Antibody to Genomeâ€Derived Neisserial Antigen 2132, aNeisseria meningitidisCandidate Vaccine, Confers Protection against Bacteremia in the Absence of Complementâ€Mediated Bactericidal Activity. Journal of Infectious Diseases, 2003, 188, 1730-1740.	1.9	129
131	Transcriptome Analysis of Neisseria meningitidis in Human Whole Blood and Mutagenesis Studies Identify Virulence Factors Involved in Blood Survival. PLoS Pathogens, 2011, 7, e1002027.	2.1	129
132	Structural and biochemical studies of HCMV gH/gL/gO and Pentamer reveal mutually exclusive cell entry complexes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1767-1772.	3.3	129
133	Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Molecular Microbiology, 1997, 26, 665-674.	1.2	128
134	MF59 adjuvant: the best insurance against influenza strain diversity. Expert Review of Vaccines, 2011, 10, 447-462.	2.0	128
135	NadA Diversity and Carriage in Neisseria meningitidis. Infection and Immunity, 2004, 72, 4217-4223.	1.0	127
136	Streptococcus pneumoniae Pilus Subunits Protect Mice against Lethal Challenge. Infection and Immunity, 2007, 75, 1059-1062.	1.0	127
137	Defining a protective epitope on factor H binding protein, a key meningococcal virulence factor and vaccine antigen. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3304-3309.	3.3	125
138	The adjuvant MF59 induces ATP release from muscle that potentiates response to vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21095-21100.	3.3	125
139	The Gracefully Aging Immune System. Science Translational Medicine, 2013, 5, 185ps8.	5.8	124
140	Expression and immunological properties of the five subunits of pertussis toxin. Infection and Immunity, 1987, 55, 963-967.	1.0	124
141	Hybrid immunity improves B cells and antibodies against SARS-CoV-2 variants. Nature, 2021, 600, 530-535.	13.7	124
142	The Hsp60 protein of Helicobacter pylori: structure and immune response in patients with gastroduodenal diseases. Molecular Microbiology, 1993, 9, 645-652.	1.2	123
143	Dual RNA-seq of Nontypeable Haemophilus influenzae and Host Cell Transcriptomes Reveals Novel Insights into Host-Pathogen Cross Talk. MBio, 2015, 6, e01765-15.	1.8	123
144	Genetic characterization of Bordetella pertussis filamentous haemagglutinin: a protein processed from an unusually large precursor. Molecular Microbiology, 1990, 4, 787-800.	1.2	122

#	Article	IF	CITATIONS
145	A genetically detoxified derivative of heat-labile Escherichia coli enterotoxin induces neutralizing antibodies against the A subunit Journal of Experimental Medicine, 1994, 180, 2147-2153.	4.2	122
146	Mycobacterial heat-shock proteins as carrier molecules. II: The use of the 70-kDa mycobacterial heat-shock protein as carrier for conjugated vaccinescan circumvent the need for adjuvants and	1.6	120
147	Antimicrobial resistance and the role of vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12868-12871.	3.3	120
148	Novel Approaches to Vaccine Delivery. Pharmaceutical Research, 2004, 21, 1519-1530.	1.7	119
149	Vaccines, Reverse Vaccinology, and Bacterial Pathogenesis. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a012476-a012476.	2.9	119
150	Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins. Molecular Microbiology, 1994, 14, 41-50.	1.2	118
151	Subunit S1 of pertussis toxin: mapping of the regions essential for ADP-ribosyltransferase activity Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 7521-7525.	3.3	117
152	Reverse vaccinology. Drug Discovery Today, 2003, 8, 459-464.	3.2	117
153	Synthesis and Characterization of a Native, Oligomeric Form of Recombinant Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein. Journal of Virology, 2004, 78, 10328-10335.	1.5	117
154	Structural vaccinology starts to deliver. Nature Reviews Microbiology, 2012, 10, 807-813.	13.6	116
155	The complete nucleotide sequence of the gene coding for diphtheria toxin in the corynephage omega (tox+) genome. Nucleic Acids Research, 1983, 11, 6589-6595.	6.5	115
156	Pneumococcal Pili Are Composed of Protofilaments Exposing Adhesive Clusters of Rrg A. PLoS Pathogens, 2008, 4, e1000026.	2.1	114
157	Post-genomic vaccine development. FEBS Letters, 2006, 580, 2985-2992.	1.3	113
158	Positive regulation of pertussis toxin expression Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3913-3917.	3.3	111
159	Effect of Helicobacter pylori Vacuolating Toxin on Maturation and Extracellular Release of Procathepsin D and on Epidermal Growth Factor Degradation. Journal of Biological Chemistry, 1997, 272, 25022-25028.	1.6	111
160	Distribution and genetic variability of three vaccine components in a panel of strains representative of the diversity of serogroup B meningococcus. Vaccine, 2009, 27, 2794-2803.	1.7	111
161	Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5229-5234.	3.3	111
162	Molecular Epidemiology of the 1984–1986 Outbreak of Diphtheria in Sweden. New England Journal of Medicine, 1988, 318, 12-14.	13.9	110

RINO RAPPUOLI

#	Article	IF	CITATIONS
163	Protective Levels of Diphtheria-Neutralizing Antibody Induced in Healthy Volunteers by Unilateral Priming-Boosting Intranasal Immunization Associated with Restricted Ipsilateral Mucosal Secretory Immunoglobulin A. Infection and Immunity, 2003, 71, 726-732.	1.0	110
164	The pan-genome: towards a knowledge-based discovery of novel targets for vaccines and antibacterials. Drug Discovery Today, 2007, 12, 429-439.	3.2	110
165	Molecular mechanisms of complement evasion: learning from staphylococci and meningococci. Nature Reviews Microbiology, 2010, 8, 393-399.	13.6	110
166	Two years into reverse vaccinology. Vaccine, 2003, 21, 605-610.	1.7	109
167	Pertussis toxin export requires accessory genes located downstream from the pertussis toxin operon. Molecular Microbiology, 1993, 8, 429-434.	1.2	108
168	Ng-MIP, a surface-exposed lipoprotein ofNeisseria gonorrhoeae, has a peptidyl-prolylcis/transisomerase (PPlase) activity and is involved in persistence in macrophages. Molecular Microbiology, 2005, 58, 669-681.	1.2	107
169	Comparison of Open-Source Reverse Vaccinology Programs for Bacterial Vaccine Antigen Discovery. Frontiers in Immunology, 2019, 10, 113.	2.2	107
170	Biochemical and biological characteristics of cross-reacting material 197 (CRM197), a non-toxic mutant of diphtheria toxin: Use as a conjugation protein in vaccines and other potential clinical applications. Biologicals, 2011, 39, 195-204.	0.5	104
171	Genome sequencing of disease and carriage isolates of nontypeable <i>Haemophilus influenzae</i> ioldentifies discrete population structure. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5439-5444.	3.3	104
172	Neisseria meningitidis: pathogenesis and immunity. Current Opinion in Microbiology, 2015, 23, 68-72.	2.3	104
173	Mutants of the Escherichia coli heat-labile enterotoxin as safe and strong adjuvants for intranasal delivery of vaccines. Expert Review of Vaccines, 2003, 2, 285-293.	2.0	103
174	Identification of the <i>Helicobacter pylori</i> VacA Toxin Domain Active in the Cell Cytosol. Infection and Immunity, 1998, 66, 6014-6016.	1.0	102
175	Introduction of unmarked mutations in the Helicobacter pylori vacA gene with a sucrose sensitivity marker. Infection and Immunity, 1997, 65, 1949-1952.	1.0	102
176	Modulation of Innate and Acquired Immune Responses byEscherichia coliHeat-Labile Toxin: Distinct Pro- and Anti-Inflammatory Effects of the Nontoxic AB Complex and the Enzyme Activity. Journal of Immunology, 2000, 165, 5750-5759.	0.4	101
177	Human circulating influenza-CD4 ⁺ ICOS1 ⁺ IL-21 ⁺ T cells expand after vaccination, exert helper function, and predict antibody responses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14330-14335.	3.3	101
178	Deploy vaccines to fight superbugs. Nature, 2017, 552, 165-167.	13.7	100
179	Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation. Journal of Bacteriology, 1997, 179, 4676-4683.	1.0	99
180	Factor H-Binding Protein Is Important for Meningococcal Survival in Human Whole Blood and Serum and in the Presence of the Antimicrobial Peptide LL-37. Infection and Immunity, 2009, 77, 292-299.	1.0	99

#	Article	IF	CITATIONS
181	A mutant pertussis toxin molecule that lacks ADP-ribosyltransferase activity, PT-9K/129G, is an effective mucosal adjuvant for intranasally delivered proteins. Infection and Immunity, 1995, 63, 2100-2108.	1.0	99
182	From Pasteur to genomics: progress and challenges in infectious diseases. Nature Medicine, 2004, 10, 1177-1185.	15.2	98
183	Prevalence and genetic diversity of candidate vaccine antigens among invasive Neisseria meningitidis isolates in the United States. Vaccine, 2011, 29, 4739-4744.	1.7	98
184	On the mechanisms of conjugate vaccines. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14-16.	3.3	96
185	Helicobacter pylori cytotoxin: importance of native conformation for induction of neutralizing antibodies. Infection and Immunity, 1995, 63, 4476-4480.	1.0	96
186	Structural and genetic analysis of the bvg locus in Bordetella species. Molecular Microbiology, 1991, 5, 2481-2491.	1.2	95
187	Molecular architecture of Streptococcus pneumoniae TIGR4 pili. EMBO Journal, 2009, 28, 3921-3930.	3.5	95
188	Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nature Immunology, 2022, 23, 275-286.	7.0	95
189	Neisseria meningitidis App, a new adhesin with autocatalytic serine protease activity. Molecular Microbiology, 2003, 48, 323-334.	1.2	94
190	<i>Escherichia coli</i> Heat-Labile Enterotoxin Promotes Protective Th17 Responses against Infection by Driving Innate IL-1 and IL-23 Production. Journal of Immunology, 2011, 186, 5896-5906.	0.4	94
191	Designing Vaccines for the Twenty-First Century Society. Frontiers in Immunology, 2014, 5, 12.	2.2	94
192	Evolutionary relationships in the genus Bordetella. Molecular Microbiology, 1987, 1, 301-308.	1.2	92
193	Recombinant Mycobacterium bovis BCG Expressing Pertussis Toxin Subunit S1 Induces Protection against an Intracerebral Challenge with Live Bordetella pertussis in Mice. Infection and Immunity, 2000, 68, 4877-4883.	1.0	91
194	Clonal success of piliated penicillin nonsusceptible pneumococci. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12907-12912.	3.3	91
195	Phase variants of Bordetella bronchiseptica arise by spontaneous deletions in the vir locus. Molecular Microbiology, 1989, 3, 1719-1728.	1.2	90
196	Vaccines and antibiotic resistance. Current Opinion in Microbiology, 2012, 15, 596-602.	2.3	90
197	Helicobacter pylori-specific CD4+ T-cell clones from peripheral blood and gastric biopsies. Infection and Immunity, 1995, 63, 1102-1106.	1.0	90
198	In Vitro Analysis of Protein-Operator Interactions of the NikR and Fur Metal-Responsive Regulators of Coregulated Genes in Helicobacter pylori. Journal of Bacteriology, 2005, 187, 7703-7715.	1.0	89

#	Article	IF	CITATIONS
199	Vaccine discovery and translation of new vaccine technology. Lancet, The, 2011, 378, 360-368.	6.3	89
200	The Region Comprising Amino Acids 100 to 255 of Neisseria meningitidis Lipoprotein GNA 1870 Elicits Bactericidal Antibodies. Infection and Immunity, 2005, 73, 1151-1160.	1.0	88
201	Vaccines and global health: In search of a sustainable model for vaccine development and delivery. Science Translational Medicine, 2019, 11, .	5.8	88
202	Mutants of <i>Escherichia coli</i> Heat-Labile Toxin Act as Effective Mucosal Adjuvants for Nasal Delivery of an Acellular Pertussis Vaccine: Differential Effects of the Nontoxic AB Complex and Enzyme Activity on Th1 and Th2 Cells. Infection and Immunity, 1999, 67, 6270-6280.	1.0	88
203	Dissecting human T cell responses against Bordetella species Journal of Experimental Medicine, 1988, 168, 1351-1362.	4.2	87
204	In Vivo Dissection of the Helicobacter pylori Fur Regulatory Circuit by Genome-Wide Location Analysis. Journal of Bacteriology, 2006, 188, 4654-4662.	1.0	86
205	Growth of Helicobacter pylori in media containing cyclodextrins. Journal of Clinical Microbiology, 1993, 31, 160-162.	1.8	86
206	The Acid Activation ofHelicobacter pyloriToxin VacA: Structural and Membrane Binding Studies. Biochemical and Biophysical Research Communications, 1998, 248, 334-340.	1.0	84
207	Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal <i>Salmonella</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10428-10433.	3.3	84
208	Reverse Vaccinology and Genomics. Science, 2003, 302, 602-602.	6.0	83
209	The impact of genomics on vaccine design. Trends in Biotechnology, 2005, 23, 84-91.	4.9	83
210	Properties of pertussis toxin mutant PT-9K/129G after formaldehyde treatment. Infection and Immunity, 1991, 59, 625-630.	1.0	83
211	Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. Journal of Biological Chemistry, 1993, 268, 1567-74.	1.6	83
212	Unravelling the pathogenic role of Helicobacter pylori in peptic ulcer: Potential new therapies and vaccines. Trends in Biotechnology, 1994, 12, 420-426.	4.9	82
213	Vaccinology at the beginning of the 21st century. Current Opinion in Immunology, 2005, 17, 411-418.	2.4	82
214	Neisseria meningitidis NhhA is a multifunctional trimeric autotransporter adhesin. Molecular Microbiology, 2006, 61, 631-644.	1.2	82
215	Vaccines against Meningococcal Diseases. Microorganisms, 2020, 8, 1521.	1.6	82
216	Therapeutic Vaccination against Helicobacter pylori in the Beagle Dog Experimental Model: Safety, Immunogenicity, and Efficacy. Infection and Immunity, 2004, 72, 3252-3259.	1.0	81

#	Article	IF	CITATIONS
217	Development of vaccines <i>against Helicobacter pylori</i> . Expert Review of Vaccines, 2009, 8, 1037-1049.	2.0	81
218	Sequence type 1 group B <i>Streptococcus</i> , an emerging cause of invasive disease in adults, evolves by small genetic changes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6431-6436.	3.3	81
219	Construction of nontoxic derivatives of cholera toxin and characterization of the immunological response against the A subunit. Infection and Immunity, 1995, 63, 2356-2360.	1.0	81
220	Vi-CRM197 as a new conjugate vaccine against Salmonella Typhi. Vaccine, 2011, 29, 712-720.	1.7	80
221	Evaluation of the recombinant 38-kilodalton antigen of Mycobacterium tuberculosis as a potential immunodiagnostic reagent. Journal of Clinical Microbiology, 1997, 35, 553-557.	1.8	80
222	Immunobiology of Helicobacter pylori infection. Current Opinion in Immunology, 1997, 9, 498-503.	2.4	79
223	Phylogeny of the SARS Coronavirus. Science, 2003, 302, 1504b-1505.	6.0	79
224	Measuring antigen-specific bactericidal responses to a multicomponent vaccine against serogroup B meningococcus. Vaccine, 2010, 28, 5023-5030.	1.7	79
225	Intranasal Immunization with SAG1 and Nontoxic Mutant Heat-Labile Enterotoxins Protects Mice againstToxoplasma gondii. Infection and Immunity, 2001, 69, 1605-1612.	1.0	78
226	The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. Journal of Clinical Investigation, 2001, 108, 929-937.	3.9	78
227	3D imaging of the 58 kda cell binding subunit of the Helicobacter pylori cytotoxin. Journal of Molecular Biology, 1999, 290, 459-470.	2.0	77
228	Reverse vaccinology in the 21st century: improvements over the original design. Annals of the New York Academy of Sciences, 2013, 1285, 115-132.	1.8	77
229	Editorial: Reverse Vaccinology. Frontiers in Immunology, 2019, 10, 2776.	2.2	77
230	Microbial genomes and vaccine design: refinements to the classical reverse vaccinology approach. Current Opinion in Microbiology, 2006, 9, 532-536.	2.3	76
231	Vaccines Against Antimicrobial Resistance. Frontiers in Immunology, 2020, 11, 1048.	2.2	76
232	The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a potent stimulant of mast cells. European Journal of Immunology, 2002, 32, 671.	1.6	76
233	Computer modelling of the NAD binding site of ADP-ribosylating toxins: active-site structure and mechanism of NAD binding. Molecular Microbiology, 1991, 5, 23-31.	1.2	75
234	MHC class I-restricted cytotoxic lymphocyte responses induced by enterotoxin-based mucosal adjuvants. Journal of Immunology, 1999, 163, 6502-10.	0.4	75

#	Article	IF	CITATIONS
235	The adjuvant effect of a nonâ€toxic mutant of heatâ€labile enterotoxin of Escherichia coli for the induction of measles virusâ€specific CTL responses after intranasal coâ€immunization with a synthetic peptide. Immunology, 1996, 89, 483-487.	2.0	74
236	Genome-derived vaccines. Expert Review of Vaccines, 2004, 3, 59-76.	2.0	74
237	Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate. Vaccine, 2010, 29, 104-114.	1.7	74
238	Cell Specificity of Helicobacter pylori Cytotoxin Is Determined by a Short Region in the Polymorphic Midregion. Infection and Immunity, 2000, 68, 3754-3757.	1.0	73
239	Expression of factor H binding protein in meningococcal strains can vary at least 15-fold and is genetically determined. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2714-2719.	3.3	73
240	Putative Vaccine Antigens fromNeisseria meningitidisRecognized by Serum Antibodies of Young Children Convalescing after Meningococcal Disease. Journal of Infectious Diseases, 2004, 190, 1488-1497.	1.9	72
241	Safety of AS03-adjuvanted influenza vaccines: A review of the evidence. Vaccine, 2019, 37, 3006-3021.	1.7	72
242	Iron-Dependent Transcription of the frpB Gene of Helicobacter pylori Is Controlled by the Fur Repressor Protein. Journal of Bacteriology, 2001, 183, 4932-4937.	1.0	71
243	Influenza: Options to Improve Pandemic Preparation. Science, 2012, 336, 1531-1533.	6.0	71
244	Human T cell clones define S1 subunit as the most immunogenic moiety of pertussis toxin and determine its epitope map Journal of Experimental Medicine, 1989, 169, 1519-1532.	4.2	70
245	Vaccines with the MF59 Adjuvant Do Not Stimulate Antibody Responses against Squalene. Vaccine Journal, 2006, 13, 1010-1013.	3.2	70
246	Genetically Detoxified Mutants of Heat-Labile Toxin from <i>Escherichia coli</i> Are Able To Act as Oral Adjuvants. Infection and Immunity, 1999, 67, 4400-4406.	1.0	70
247	Efficacy, immunogenicity, and safety of a parenteral vaccine against Helicobacter pylori in healthy volunteers challenged with a Cag-positive strain: a randomised, placebo-controlled phase 1/2 study. The Lancet Gastroenterology and Hepatology, 2018, 3, 698-707.	3.7	69
248	Immune response in COVID-19: what is next?. Cell Death and Differentiation, 2022, 29, 1107-1122.	5.0	69
249	Lipid interaction of diphtheria toxin and mutants with altered fragment B. 2. Hydrophobic photolabelling and cell intoxication. FEBS Journal, 1987, 169, 637-644.	0.2	68
250	Autoregulation of Helicobacter pylori Fur revealed by functional analysis of the iron-binding site. Molecular Microbiology, 2002, 46, 1107-1122.	1.2	68
251	Inhibition of the vacuolating and anion channel activities of the VacA toxin ofHelicobacter pylori. FEBS Letters, 1999, 460, 221-225.	1.3	67
252	Towards deciphering the Helicobacter pylori cytotoxin. Molecular Microbiology, 1999, 34, 197-204.	1.2	65

#	Article	IF	CITATIONS
253	<i>Neisseria meningitidis</i> NalP cleaves human complement C3, facilitating degradation of C3b and survival in human serum. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 427-432.	3.3	65
254	SARS-CoV-2 escaped natural immunity, raising questions about vaccines and therapies. Nature Medicine, 2021, 27, 759-761.	15.2	65
255	Expression and immunogenicity of pertussis toxin S1 subunit-tetanus toxin fragment C fusions in Salmonella typhi vaccine strain CVD 908. Infection and Immunity, 1996, 64, 4172-4181.	1.0	65
256	Characterization of Diverse Subvariants of the Meningococcal Factor H (fH) Binding Protein for Their Ability To Bind fH, To Mediate Serum Resistance, and To Induce Bactericidal Antibodies. Infection and Immunity, 2011, 79, 970-981.	1.0	64
257	Oil-in-Water Emulsion MF59 Increases Germinal Center B Cell Differentiation and Persistence in Response to Vaccination. Journal of Immunology, 2015, 195, 1617-1627.	0.4	64
258	Genetic Meningococcal Antigen Typing System (gMATS): A genotyping tool that predicts 4CMenB strain coverage worldwide. Vaccine, 2019, 37, 991-1000.	1.7	64
259	Promoter of the pertussis toxin operon and production of pertussis toxin. Journal of Bacteriology, 1987, 169, 2843-2846.	1.0	63
260	Helicobacter pylori: molecular evolution of a bacterial quasi-species. Current Opinion in Microbiology, 1998, 1, 96-102.	2.3	63
261	Vaccine adjuvants: The dream becomes real. Hum Vaccin, 2008, 4, 347-349.	2.4	63
262	Designing the Next Generation of Vaccines for Global Public Health. OMICS A Journal of Integrative Biology, 2011, 15, 545-566.	1.0	63
263	Size fractionation of bacterial capsular polysaccharides for their use in conjugate vaccines. Vaccine, 1999, 17, 1251-1263.	1.7	62
264	Innate Imprinting by the Modified Heat-Labile Toxin of <i>Escherichia coli</i> (LTK63) Provides Generic Protection against Lung Infectious Disease. Journal of Immunology, 2004, 173, 7435-7443.	0.4	62
265	Helicobacter pylori CagA: From Pathogenic Mechanisms to Its Use as an Anti-Cancer Vaccine. Frontiers in Immunology, 2013, 4, 328.	2.2	62
266	Vaccinology in the postâ ´`COVID-19 era. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	62
267	Intranasal Immunization with Pneumococcal Polysaccharide Conjugate Vaccines with Nontoxic Mutants of <i>Escherichia coli</i> Heat-Labile Enterotoxins as Adjuvants Protects Mice against Invasive Pneumococcal Infections. Infection and Immunity, 1999, 67, 5892-5897.	1.0	62
268	Photolabeling of Glu-129 of the S-1 subunit of pertussis toxin with NAD. Infection and Immunity, 1989, 57, 3549-3554.	1.0	61
269	Formaldehyde treatment of proteins can constrain presentation to T cells by limiting antigen processing. Infection and Immunity, 1994, 62, 1830-1834.	1.0	61
270	Induction of Protective Serum Meningococcal Bactericidal and Diphtheria-Neutralizing Antibodies and Mucosal Immunoglobulin A in Volunteers by Nasal Insufflations of the Neisseria meningitidis Serogroup C Polysaccharide-CRM197 Conjugate Vaccine Mixed with Chitosan. Infection and Immunity, 2005, 73, 8256-8265.	1.0	60

#	Article	IF	CITATIONS
271	Structure of the meningococcal vaccine antigen NadA and epitope mapping of a bactericidal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17128-17133.	3.3	60
272	Meningococcal B vaccine (4CMenB): the journey from research to real world experience. Expert Review of Vaccines, 2018, 17, 1111-1121.	2.0	60
273	Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO Journal, 1991, 10, 3971-5.	3.5	60
274	Mucosal Vaccination against Serogroup B Meningococci: Induction of Bactericidal Antibodies and Cellular Immunity following Intranasal Immunization with NadA of Neisseria meningitidis and Mutants of Escherichia coli Heat-Labile Enterotoxin. Infection and Immunity, 2004, 72, 4052-4060.	1.0	59
275	Interlaboratory Standardization of the Sandwich Enzyme-Linked Immunosorbent Assay Designed for MATS, a Rapid, Reproducible Method for Estimating the Strain Coverage of Investigational Vaccines. Vaccine Journal, 2012, 19, 1609-1617.	3.2	59
276	Combined Adenovirus Vector and Hepatitis C Virus Envelope Protein Prime-Boost Regimen Elicits T Cell and Neutralizing Antibody Immune Responses. Journal of Virology, 2014, 88, 5502-5510.	1.5	59
277	Binding of the Helicobacter pylori Vacuolating Cytotoxin to Target Cells. Infection and Immunity, 1998, 66, 3981-3984.	1.0	59
278	CrgA Is an Inducible LysR-Type Regulator of Neisseria meningitidis , Acting both as a Repressor and as an Activator of Gene Transcription. Journal of Bacteriology, 2005, 187, 3421-3430.	1.0	58
279	Long noncoding RNAs are involved in multiple immunological pathways in response to vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17121-17126.	3.3	58
280	Pertussis toxin promoter sequences involved in modulation. Journal of Bacteriology, 1989, 171, 4026-4030.	1.0	57
281	Enhancement of Protective Efficacy following Intranasal Immunization with Vaccine Plus a Nontoxic LTK63 Mutant Delivered with Nanoparticles. Infection and Immunity, 2002, 70, 4785-4790.	1.0	57
282	Reverse vaccinology: a genome-based approach for vaccine development. Expert Opinion on Biological Therapy, 2002, 2, 895-905.	1.4	57
283	Lipid Interaction of the 37-kDa and 58-kDa Fragments of the Helicobacter Pylori Cytotoxin. FEBS Journal, 1995, 234, 947-952.	0.2	56
284	Transcriptional analysis of the divergent cagAB genes encoded by the pathogenicity island of Helicobacter pylori. Molecular Microbiology, 1997, 26, 361-372.	1.2	56
285	The VacA toxin of Helicobacter pylori identifies a new intermediate filament-interacting protein. EMBO Journal, 2000, 19, 48-56.	3.5	56
286	Synthesis, chemical and rheological characterization of new hyaluronic acid-based hydrogels. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 383-399.	1.9	56
287	Growth Phase-Dependent Regulation of Target Gene Promoters for Binding of the Essential Orphan Response Regulator HP1043 of Helicobacter pylori. Journal of Bacteriology, 2002, 184, 4800-4810.	1.0	56
288	Effect of Neisseria meningitidis Fur Mutations on Global Control of Gene Transcription. Journal of Bacteriology, 2006, 188, 2483-2492.	1.0	56

#	Article	IF	CITATIONS
289	Group BStreptococcusCrosses Human Epithelial Cells by a Paracellular Route. Journal of Infectious Diseases, 2006, 193, 241-250.	1.9	56
290	Protease susceptibility and toxicity of heat-labile enterotoxins with a mutation in the active site or in the protease-sensitive loop. Infection and Immunity, 1997, 65, 331-334.	1.0	56
291	HIV-1 Tat Promotes Integrin-Mediated HIV Transmission to Dendritic Cells by Binding Env Spikes and Competes Neutralization by Anti-HIV Antibodies. PLoS ONE, 2012, 7, e48781.	1.1	56
292	High-level expression of a proteolytically sensitive diphtheria toxin fragment in Escherichia coli. Journal of Bacteriology, 1987, 169, 5140-5151.	1.0	55
293	Adhesion of Bordetella pertussis to eukaryotic cells requires a time-dependent export and maturation of filamentous hemagglutinin Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 9204-9208.	3.3	55
294	Helicobacter pylori Interactions with Host Serum and Extracellular Matrix Proteins: Potential Role in the Infectious Process. Microbiology and Molecular Biology Reviews, 2002, 66, 617-629.	2.9	55
295	Solution Structure of the Factor H-binding Protein, a Survival Factor and Protective Antigen of Neisseria meningitidis. Journal of Biological Chemistry, 2009, 284, 9022-9026.	1.6	55
296	Genetically Detoxified Pertussis Toxin Induces Th1/Th17 Immune Response through MAPKs and IL-10-Dependent Mechanisms. Journal of Immunology, 2009, 183, 1892-1899.	0.4	55
297	Structure of a protective epitope of group B <i>Streptococcus</i> type III capsular polysaccharide. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5017-5022.	3.3	55
298	Lymphokine secretion and cytotoxic activity of human CD4+ T-cell clones against Bordetella pertussis. Infection and Immunity, 1991, 59, 3768-3773.	1.0	55
299	Integration of corynebacteriophages beta tox+, omega tox+, and gamma tox- into two attachment sites on the Corynebacterium diphtheriae chromosome. Journal of Bacteriology, 1983, 153, 1202-1210.	1.0	55
300	IgA-dependent cell-mediated activity against enteropathogenic bacteria: distribution, specificity, and characterization of the effector cells. Journal of Immunology, 1984, 133, 988-92.	0.4	55
301	Levels of Expression and Immunogenicity of Attenuated Salmonella enterica Serovar Typhimurium Strains Expressing Escherichia coli Mutant Heat-Labile Enterotoxin. Infection and Immunity, 1998, 66, 224-231.	1.0	54
302	Transcutaneous Immunization with Tetanus Toxoid and Mutants ofEscherichia coliHeat‣abile Enterotoxin as Adjuvants Elicits Strong Protective Antibody Responses. Journal of Infectious Diseases, 2003, 188, 753-758.	1.9	54
303	Neisseria Adhesin A Variation and Revised Nomenclature Scheme. Vaccine Journal, 2014, 21, 966-971.	3.2	54
304	Emerging experience with meningococcal serogroup B protein vaccines. Expert Review of Vaccines, 2017, 16, 433-451.	2.0	54
305	Differential binding of BvgA to two classes of virulence genes of Bordetella pertussis directs promoter selectivity by RNA polymerase. Molecular Microbiology, 1996, 21, 557-565.	1.2	53
306	Identification of Neisseria meningitidis Nonlipopolysaccharide Ligands for Class A Macrophage Scavenger Receptor by Using a Novel Assay. Infection and Immunity, 2006, 74, 5191-5199.	1.0	53

RINO RAPPUOLI

#	Article	IF	CITATIONS
307	Pushing the limits of cellular microbiology: Microarrays to study bacteria-host cell intimate contacts. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13467-13469.	3.3	52
308	Generating memory with vaccination. European Journal of Immunology, 2009, 39, 2100-2105.	1.6	52
309	Supramolecular Organization of the Repetitive Backbone Unit of the Streptococcus pneumoniae Pilus. PLoS ONE, 2010, 5, e10919.	1.1	52
310	Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19077-19082.	3.3	52
311	Isolation and characterization of Corynebacterium diphtheriae nontandem double lysogens hyperproducing CRM197. Applied and Environmental Microbiology, 1983, 46, 560-564.	1.4	52
312	One Dose of Staphylococcus aureus 4C-Staph Vaccine Formulated with a Novel TLR7-Dependent Adjuvant Rapidly Protects Mice through Antibodies, Effector CD4+ T Cells, and IL-17A. PLoS ONE, 2016, 11, e0147767.	1.1	52
313	A Novel Mimetic Antigen Eliciting Protective Antibody to <i>Neisseria meningitidis</i> . Journal of Immunology, 2001, 167, 6487-6496.	0.4	51
314	The quest for a vaccine against Helicobacter pylori: how to move from mouse to man?. Microbes and Infection, 2003, 5, 749-756.	1.0	51
315	GNA33 of Neisseria meningitidis Is a Lipoprotein Required for Cell Separation, Membrane Architecture, and Virulence. Infection and Immunity, 2004, 72, 1914-1919.	1.0	51
316	The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles. Molecular and Cellular Proteomics, 2015, 14, 2138-2149.	2.5	51
317	Conservation of Meningococcal Antigens in the Genus <i>Neisseria</i> . MBio, 2013, 4, e00163-13.	1.8	50
318	Acellular pertussis vaccine composed of genetically inactivated pertussis toxin: Safety and immunogenicity in 12- to 24- and 2- to 4-month-old children. Journal of Pediatrics, 1992, 120, 680-685.	0.9	49
319	Rationally designed strings of promiscuous CD4+ T cell epitopes provide help toHaemophilus influenzae type b oligosaccharide: a model for new conjugate vaccines. European Journal of Immunology, 2001, 31, 3816-3824.	1.6	49
320	Modulation of Immune Response to Group C Meningococcal Conjugate Vaccine Given Intranasally to Mice Together with the LTK63 Mucosal Adjuvant and the Trimethyl Chitosan Delivery System. Journal of Infectious Diseases, 2004, 189, 828-832.	1.9	49
321	Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens. Journal of Biotechnology, 2004, 113, 15-32.	1.9	49
322	Sequence constancies and variations in genes encoding three new meningococcal vaccine candidate antigens. Vaccine, 2006, 24, 2161-2168.	1.7	49
323	The subunit S1 is important for pertussis toxin secretion. Journal of Biological Chemistry, 1990, 265, 17759-63.	1.6	49
324	Rational design of vaccines. Nature Medicine, 1997, 3, 374-376.	15.2	48

#	Article	IF	CITATIONS
325	The neutrophil-activating protein of Helicobacter pylori (HP-NAP) activates the MAPK pathway in human neutrophils. European Journal of Immunology, 2003, 33, 840-849.	1.6	48
326	A Conventional Beagle Dog Model for Acute and Chronic Infection with <i>Helicobacter pylori</i> . Infection and Immunity, 1999, 67, 3112-3120.	1.0	48
327	Mu-Like Prophage in Serogroup B Neisseria meningitidis Coding for Surface-Exposed Antigens. Infection and Immunity, 2001, 69, 2580-2588.	1.0	47
328	Prevalence and sequence variations of the genes encoding the five antigens included in the novel 5CVMB vaccine covering group B meningococcal disease. Vaccine, 2009, 27, 1579-1584.	1.7	47
329	Influence of sequence variability on bactericidal activity sera induced by Factor H binding protein variant 1.1. Vaccine, 2011, 29, 1072-1081.	1.7	47
330	Role of O-Acetylation in the Immunogenicity of Bacterial Polysaccharide Vaccines. Molecules, 2018, 23, 1340.	1.7	47
331	Properties of the B oligomer of pertussis toxin. Infection and Immunity, 1991, 59, 4732-4734.	1.0	47
332	An Analysis of the Sequence Variability of Meningococcal fHbp, NadA and NHBA over a 50-Year Period in the Netherlands. PLoS ONE, 2013, 8, e65043.	1.1	47
333	Histidine 21 is at the NAD+ binding site of diphtheria toxin. Journal of Biological Chemistry, 1989, 264, 12385-8.	1.6	47
334	Haemophilus influenzae infections and whooping cough. Lancet, The, 1990, 335, 1324-1329.	6.3	46
335	Inhibition of Helicobacter pylori urease by omeprazole. European Journal of Gastroenterology and Hepatology, 1993, 5, 683-686.	0.8	46
336	Protective immune responses to meningococcal C conjugate vaccine after intranasal immunization of mice with the LTK63 mutant plus chitosan or trimethyl chitosan chloride as novel delivery platform. Journal of Drug Targeting, 2005, 13, 489-498.	2.1	46
337	Efficacy of Vaccination with Different Combinations of MF59-Adjuvanted and Nonadjuvanted Seasonal and Pandemic Influenza Vaccines against Pandemic H1N1 (2009) Influenza Virus Infection in Ferrets. Journal of Virology, 2011, 85, 2851-2858.	1.5	46
338	NarE: a novel ADPâ€ribosyltransferase from Neisseria meningitidis. Molecular Microbiology, 2003, 50, 1055-1067.	1.2	45
339	Seasonal Influenza Vaccine Provides Priming for A/H1N1 Immunization. Science Translational Medicine, 2009, 1, 12re1.	5.8	45
340	Novel adjuvant Alum-TLR7 significantly potentiates immune response to glycoconjugate vaccines. Scientific Reports, 2016, 6, 29063.	1.6	45
341	The genome revolution in vaccine research. Current Issues in Molecular Biology, 2004, 6, 17-27.	1.0	45
342	Epitope Mapping of a Bactericidal Monoclonal Antibody against the Factor H Binding Protein of Neisseria meningitidis. Journal of Molecular Biology, 2009, 386, 97-108.	2.0	44

#	Article	IF	CITATIONS
343	The vacuolar ATPase proton pump is present on intracellular vacuoles induced by Helicobacter pylori. Journal of Medical Microbiology, 1996, 45, 84-89.	0.7	43
344	Restriction map of corynebacteriophages beta c and beta vir and physical localization of the diphtheria tox operon. Journal of Bacteriology, 1981, 148, 124-130.	1.0	43
345	SARS Vaccine Protective in Mice. Emerging Infectious Diseases, 2005, 11, 1312-1314.	2.0	42
346	LytM Proteins Play a Crucial Role in Cell Separation, Outer Membrane Composition, and Pathogenesis in Nontypeable Haemophilus influenzae. MBio, 2015, 6, e02575.	1.8	42
347	Human protective response induced by meningococcus B vaccine is mediated by the synergy of multiple bactericidal epitopes. Scientific Reports, 2018, 8, 3700.	1.6	42
348	DNA element of Corynebacterium diphtheriae with properties of an insertion sequence and usefulness for epidemiological studies. Journal of Bacteriology, 1987, 169, 308-312.	1.0	41
349	Differential response of the bvg virulence regulon of Bordetella pertussis to MgSO4 modulation. Journal of Bacteriology, 1991, 173, 7401-7404.	1.0	41
350	The Iron-Responsive Regulator Fur Is Transcriptionally Autoregulated and Not Essential in Neisseria meningitidis. Journal of Bacteriology, 2003, 185, 6032-6041.	1.0	41
351	Reverse Vaccinology and Vaccines for Serogroup B Neisseria meningitidis. , 2005, 568, 217-223.		41
352	Ebola vaccine R&D: Filling the knowledge gaps. Science Translational Medicine, 2015, 7, 317ps24.	5.8	41
353	Functional analysis of theHelicobacter pyloriprincipal sigma subunit of RNA polymerase reveals that the spacer region is important for efficient transcription. Molecular Microbiology, 1998, 30, 121-134.	1.2	40
354	Identification of a new OmpA-like protein in Neisseria gonorrhoeae involved in the binding to human epithelial cells and in vivo colonization. Molecular Microbiology, 2007, 64, 1391-1403.	1.2	40
355	Correlates of protection against influenza infection in humans—on the path to a universal vaccine?. Current Opinion in Immunology, 2013, 25, 470-476.	2.4	40
356	Phagocyte subsets and lymphocyte clonal deletion behind ineffective immune response to <i>Staphylococcus aureus</i> . FEMS Microbiology Reviews, 2015, 39, 750-763.	3.9	40
357	Preclinical evaluation of group B Neisseria meningitidis and Escherichia coli K92 capsular polysaccharide-protein conjugate vaccines in juvenile rhesus monkeys. Infection and Immunity, 1997, 65, 1045-1052.	1.0	40
358	Restriction endonuclease map of the nontoxigenic corynephage gamma c and its relationship to the toxigenic corynephage beta c. Journal of Virology, 1982, 42, 510-518.	1.5	40
359	Genetics of pertussis toxin. Molecular Microbiology, 1989, 3, 119-124.	1.2	39
360	Both Immunization with Protein and Recombinant Vaccinia Virus Can Stimulate CTL Specific for the E7 Protein of Human Papilloma Virus 16 in H-2d Mice. Scandinavian Journal of Immunology, 1995, 42, 557-563.	1.3	39

#	Article	IF	CITATIONS
361	Identification of errors among database sequence entries and comparison of correct amino acid sequences for the heat-labile enterotoxins of Escherichia coli and Vibrio cholerae. Molecular Microbiology, 1995, 15, 1165-1167.	1.2	39
362	Neutrophil-activating protein (HP-NAP) versus ferritin (Pfr): comparison of synthesis in Helicobacter pylori. FEMS Microbiology Letters, 2001, 199, 143-149.	0.7	39
363	Modulation of the Immune Response to the Severe Acute Respiratory Syndrome Spike Glycoprotein by Gene-Based and Inactivated Virus Immunization. Journal of Virology, 2005, 79, 13915-13923.	1.5	39
364	Application of Microbial Genomic Science to Advanced Therapeutics. Annual Review of Medicine, 2005, 56, 459-474.	5.0	39
365	A novel epigenetic regulator associated with the hypervirulent Neisseria meningitidis clonal complex 41/44. FASEB Journal, 2011, 25, 3622-3633.	0.2	39
366	RrgB321, a Fusion Protein of the Three Variants of the Pneumococcal Pilus Backbone RrgB, Is Protectiveln Vivoand Elicits Opsonic Antibodies. Infection and Immunity, 2012, 80, 451-460.	1.0	39
367	Lipid interaction of diphtheria toxin and mutants with altered fragment B. 1. Liposome aggregation and fusion. FEBS Journal, 1987, 169, 629-635.	0.2	38
368	Comparative study of a whole-cell pertussis vaccine and a recombinant acellular pertussis vaccine. Journal of Pediatrics, 1994, 124, 921-926.	0.9	38
369	An anti-repression Fur operator upstream of the promoter is required for iron-mediated transcriptional autoregulation in Helicobacter pylori. Molecular Microbiology, 2003, 50, 1329-1338.	1.2	38
370	SR-A, MARCO and TLRs Differentially Recognise Selected Surface Proteins from <i> Neisseria meningitidis</i> : an Example of Fine Specificity in Microbial Ligand Recognition by Innate Immune Receptors. Journal of Innate Immunity, 2009, 1, 153-163.	1.8	38
371	Protective Efficacy Induced by Recombinant Clostridium difficile Toxin Fragments. Infection and Immunity, 2013, 81, 2851-2860.	1.0	38
372	Restriction endonuclease map of corynebacteriophage omega ctox+ isolated from the Park-Williams no. 8 strain of Corynebacterium diphtheriae. Journal of Virology, 1983, 45, 524-530.	1.5	38
373	Priming to heat shock proteins in infants vaccinated against pertussis. Journal of Immunology, 1993, 150, 2025-32.	0.4	38
374	Cloning of a novel pilin-like gene from Bordetella pertussis: homology to the fim2 gene. Molecular Microbiology, 1988, 2, 539-543.	1.2	37
375	Induction of Neutralizing Antibodies against Diphtheria Toxin by Priming with Recombinant Mycobacterium bovis BCG Expressing CRM197, a Mutant Diphtheria Toxin. Infection and Immunity, 2001, 69, 869-874.	1.0	37
376	GNA33 fromNeisseria meningitidisserogroup B encodes a membrane-bound lytic transglycosylase (MltA). FEBS Journal, 2002, 269, 3722-3731.	0.2	37
377	Solution Structure of the Immunodominant Domain of Protective Antigen GNA1870 of Neisseria meningitidis. Journal of Biological Chemistry, 2006, 281, 7220-7227.	1.6	37
378	Systems Vaccinomics: The Road Ahead for Vaccinology. OMICS A Journal of Integrative Biology, 2011, 15, 529-531.	1.0	37

#	Article	IF	CITATIONS
379	Efficacy, safety, and immunogenicity of the Shigella sonnei 1790GAHB GMMA candidate vaccine: Results from a phase 2b randomized, placebo-controlled challenge study in adults. EClinicalMedicine, 2021, 39, 101076.	3.2	37
380	Mutations in the A subunit affect yield, stability, and protease sensitivity of nontoxic derivatives of heat-labile enterotoxin. Infection and Immunity, 1996, 64, 5434-5438.	1.0	37
381	The safety of vaccines. Drug Discovery Today, 2004, 9, 846-854.	3.2	36
382	Genomeâ€based vaccine development: A short cut for the future. Hum Vaccin, 2008, 4, 184-188.	2.4	36
383	Vaccines for Staphylococcus aureus and Target Populations. Current Topics in Microbiology and Immunology, 2016, 409, 491-528.	0.7	36
384	HadA is an atypical new multifunctional trimeric coiled-coil adhesin ofHaemophilus influenzaebiogroupaegyptius, which promotes entry into host cells. Cellular Microbiology, 2009, 11, 1044-1063.	1.1	35
385	Transforming vaccine development. Seminars in Immunology, 2020, 50, 101413.	2.7	35
386	The LTR72 Mutant of Heat-Labile Enterotoxin of Escherichia coli Enhances the Ability of Peptide Antigens To Elicit CD4+ T Cells and Secrete Gamma Interferon after Coapplication onto Bare Skin. Infection and Immunity, 2002, 70, 3012-3019.	1.0	34
387	Dual Control of Helicobacter pylori Heat Shock Gene Transcription by HspR and HrcA. Journal of Bacteriology, 2004, 186, 2956-2965.	1.0	34
388	The Diphtheria and Pertussis Components of Diphtheriaâ€Tetanus Toxoids–Pertussis Vaccine Should Be Genetically Inactivated Mutant Toxins. Journal of Infectious Diseases, 2005, 191, 81-88.	1.9	34
389	Novel approaches to pediatric vaccine deliveryâ^†. Advanced Drug Delivery Reviews, 2006, 58, 29-51.	6.6	34
390	Diphtheria toxin and its mutantcrm197 differ in their interaction with lipids. FEBS Letters, 1987, 215, 73-78.	1.3	33
391	Efficient production of heat-labile enterotoxin mutant proteins by overexpression of dsbA in a degP -deficient Escherichia coli strain. Archives of Microbiology, 1997, 167, 280-283.	1.0	33
392	Sulphated hyaluronic acids: a chemical and biological characterisation. Polymer International, 1998, 46, 225-240.	1.6	33
393	The Binding Subunit of Pertussis Toxin Inhibits HIV Replication in Human Macrophages and Virus Expression in Chronically Infected Promonocytic U1 Cells. Journal of Immunology, 2001, 166, 1863-1870.	0.4	33
394	Oral Spray Immunization May Be an Alternative to Intranasal Vaccine Delivery to Induce Systemic Antibodies but not Nasal Mucosal or Cellular Immunity. Scandinavian Journal of Immunology, 2006, 63, 223-231.	1.3	33
395	Influence of serogroup B meningococcal vaccine antigens on growth and survival of the meningococcus in vitro and in ex vivo and in vivo models of infection. Vaccine, 2010, 28, 2416-2427.	1.7	33
396	Lessons from Reverse Vaccinology for viral vaccine design. Current Opinion in Virology, 2015, 11, 89-97.	2.6	33

#	Article	IF	CITATIONS
397	Conformational changes in diphtheria toxoids. FEBS Letters, 1987, 218, 271-276.	1.3	32
398	Environmental regulation of virulence factors inBordetellaspecies. BioEssays, 1993, 15, 99-104.	1.2	32
399	The response of primary articular chondrocytes to micrometric surface topography and sulphated hyaluronic acid-based matrices. Cell Biology International, 2005, 29, 605-615.	1.4	32
400	Combined Conjugate Vaccines: Enhanced Immunogenicity with the N19 Polyepitope as a Carrier Protein. Infection and Immunity, 2005, 73, 5835-5841.	1.0	32
401	A sweet T cell response. Nature Medicine, 2011, 17, 1551-1552.	15.2	32
402	Vaccine Evolution and Its Application to Fight Modern Threats. Frontiers in Immunology, 2019, 10, 1722.	2.2	32
403	Expression of the S-1 catalytic subunit of pertussis toxin in Escherichia coli. Infection and Immunity, 1987, 55, 1321-1323.	1.0	32
404	Immunogenicity of an acellular pertussis vaccine composed of genetically inactivated pertussis toxin combined with filamentous hemagglutinin and pertactin in infants and children. Journal of Pediatrics, 1993, 123, 81-84.	0.9	31
405	Mutations in the linker region of BvgS abolish response to environmental signals for the regulation of the virulence factors in Bordetella pertussis. Gene, 1994, 150, 123-127.	1.0	31
406	Cell vacuolization induced by Helicobacter pylori VacA toxin: cell line sensitivity and quantitative estimation. Toxicology Letters, 1998, 99, 109-115.	0.4	31
407	The multiple cellular activities of the VacA cytotoxin of Helicobacter pylori. International Journal of Medical Microbiology, 2004, 293, 589-597.	1.5	31
408	Novel meningococcal 4 <scp>CM</scp> enB vaccine antigens – prevalence and polymorphisms of the encoding genes in <i>Neisseria gonorrhoeae</i> . Apmis, 2012, 120, 750-760.	0.9	31
409	Transmission-Blocking Vaccines for Malaria: Time to Talk about Vaccine Introduction. Trends in Parasitology, 2019, 35, 483-486.	1.5	31
410	Construction of a diphtheria toxin A fragment-C180 peptide fusion protein which elicits a neutralizing antibody response against diphtheria toxin and pertussis toxin. Infection and Immunity, 1992, 60, 5071-5077.	1.0	31
411	Vacuolation induced by VacA toxin ofHelicobacter pylorirequires the intracellular accumulation of membrane permeant bases, Clâ ad water. FEBS Letters, 2001, 508, 479-483.	1.3	30
412	Cell entry machines: a common theme in nature?. Nature Reviews Microbiology, 2005, 3, 349-358.	13.6	30
413	Heat-labile enterotoxin of Escherichia coli and its site-directed mutant LTK63 enhance the proliferative and cytotoxic T-cell responses to intranasally co-immunized synthetic peptides. Immunology Letters, 1999, 67, 209-216.	1.1	29
414	The Acquired Immune Response to the Mucosal Adjuvant LTK63 Imprints the Mouse Lung with a Protective Signature. Journal of Immunology, 2007, 179, 5346-5357.	0.4	29

#	Article	IF	CITATIONS
415	Antibodies Elicited by the Shigella sonnei GMMA Vaccine in Adults Trigger Complement-Mediated Serum Bactericidal Activity: Results From a Phase 1 Dose Escalation Trial Followed by a Booster Extension. Frontiers in Immunology, 2021, 12, 671325.	2.2	29
416	Recognition of Neisseria meningitidis by the Long Pentraxin PTX3 and Its Role as an Endogenous Adjuvant. PLoS ONE, 2015, 10, e0120807.	1.1	29
417	Rapid purification of diphtheria toxin by phenyl sepharose and DEAE-cellulose chromatography. Journal of Chromatography A, 1983, 268, 543-548.	1.8	28
418	Cell vacuolization induced byHelicobacter pylori: Inhibition by bafilomycins A1, B1, C1 and D. FEMS Microbiology Letters, 1993, 113, 155-159.	0.7	28
419	Genetic Detoxification of Bacterial Toxins: A New Approach to Vaccine Development. International Archives of Allergy and Immunology, 1995, 108, 327-333.	0.9	28
420	Immunohistochemical Study of Lymphocyte Populations Infiltrating the Gastric Mucosa of Beagle Dogs Experimentally Infected with Helicobacter pylori. Infection and Immunity, 2000, 68, 4769-4772.	1.0	28
421	Human heat shock protein (Hsp) 90 interferes with Neisseria meningitidis adhesin A (NadA)-mediated adhesion and invasion. Cellular Microbiology, 2012, 14, 368-385.	1.1	28
422	Pertussis toxin activates platelets through an interaction with platelet glycoprotein lb. Infection and Immunity, 1994, 62, 3108-3114.	1.0	28
423	A Recombinant Live Attenuated Strain of <i>Vibrio cholerae</i> Induces Immunity against Tetanus Toxin and <i>Bordetella pertussis</i> Tracheal Colonization Factor. Infection and Immunity, 1998, 66, 1648-1653.	1.0	28
424	Characterization of the HspR-Mediated Stress Response in Helicobacter pylori. Journal of Bacteriology, 2002, 184, 2925-2930.	1.0	27
425	N19 Polyepitope as a Carrier for Enhanced Immunogenicity and Protective Efficacy of Meningococcal Conjugate Vaccines. Infection and Immunity, 2004, 72, 4884-4887.	1.0	27
426	The role of structural proteomics in vaccine development: recent advances and future prospects. Expert Review of Proteomics, 2016, 13, 55-68.	1.3	27
427	Vaccines: An achievement of civilization, a human right, our health insurance for the future. Journal of Experimental Medicine, 2019, 216, 7-9.	4.2	27
428	Immunodominant antibody germlines in COVID-19. Journal of Experimental Medicine, 2021, 218, .	4.2	27
429	Structural insights of a highly potent pan-neutralizing SARS-CoV-2 human monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120976119.	3.3	27
430	Hydrophobic photolabelling of pertussis toxin subunits interacting with lipids. FEBS Letters, 1986, 194, 301-304.	1.3	26
431	Micro Correspondence. Molecular Microbiology, 1992, 6, 2209-2211.	1.2	26
432	Characterization of the Antibody Response to Pneumococcal Glycoconjugates and the Effect of Heat‣abile Enterotoxin on IgG Subclasses after Intranasal Immunization. Journal of Infectious Diseases, 2001, 183, 1494-1500.	1.9	26

#	Article	IF	CITATIONS
433	In silico identification of novel bacterial ADP-ribosyltransferases. International Journal of Medical Microbiology, 2004, 293, 471-478.	1.5	26
434	Rational Design of a Glycoconjugate Vaccine against Group A Streptococcus. International Journal of Molecular Sciences, 2020, 21, 8558.	1.8	26
435	Recent advances in meningococcal B disease prevention: real-world evidence from 4CMenB vaccination. Journal of Infection, 2021, 83, 17-26.	1.7	26
436	Detoxification of the Helicobacter pylori cytotoxin. Infection and Immunity, 1997, 65, 4615-4619.	1.0	26
437	Physical map of the chromosomal region of Corynebacterium diphtheriae containing corynephage attachment sites attB1 and attB2. Journal of Bacteriology, 1984, 158, 325-330.	1.0	26
438	DNA topology affects transcriptional regulation of the pertussis toxin gene of Bordetella pertussis in Escherichia coli and in vitro. Journal of Bacteriology, 1993, 175, 4764-4771.	1.0	25
439	Recombinant bacterial vaccines. Current Opinion in Immunology, 2012, 24, 337-342.	2.4	25
440	Multicomponent meningococcal serogroup B vaccination elicits cross-reactive immunity in infants against genetically diverse serogroup C, W and Y invasive disease isolates. Vaccine, 2020, 38, 7542-7550.	1.7	25
441	A tRNA Arg 2 gene of Corynebacterium diphtheriae is the chromosomal integration site for toxinogenic bacteriophages. Molecular Microbiology, 1997, 25, 1179-1181.	1.2	24
442	Successful Induction of Protective Antibody Responses againstHaemophilus influenzaeType b and Diphtheria after Transcutaneous Immunization with the Glycoconjugate Polyribosyl Ribitol Phosphate–Crossâ€Reacting Material197Vaccine. Journal of Infectious Diseases, 2004, 190, 1177-1182.	1.9	24
443	Sortase A Confers Protection against <i>Streptococcus pneumoniae</i> in Mice. Infection and Immunity, 2009, 77, 2957-2961.	1.0	24
444	Self-Assembling Nanoparticles Usher in a New Era of Vaccine Design. Cell, 2019, 176, 1245-1247.	13.5	24
445	Short Vi-polysaccharide abrogates T-independent immune response and hyporesponsiveness elicited by long Vi-CRM ₁₉₇ conjugate vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24443-24449.	3.3	24
446	Looking beyond meningococcal B with the 4CMenB vaccine: the Neisseria effect. Npj Vaccines, 2021, 6, 130.	2.9	24
447	Interaction of the pertussis toxin peptide containing residues 30-42 with DR1 and the T-cell receptors of 12 human T-cell clones Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2990-2994.	3.3	23
448	SARS: Understanding the Virus and Development of Rational Therapy. Current Molecular Medicine, 2005, 5, 677-697.	0.6	23
449	Vaccine candidates for poor nations are going to waste. Nature, 2018, 564, 337-339.	13.7	23
450	Deletion of the Major Proteolytic Site of the <i>Helicobacter pylori</i> Cytotoxin Does Not Influence Toxin Activity but Favors Assembly of the Toxin into Hexameric Structures. Infection and Immunity, 1998. 66. 5547-5550.	1.0	23

#	Article	IF	CITATIONS
451	Tyrosine 65 is photolabeled by 8-azidoadenine and 8-azidoadenosine at the NAD binding site of diphtheria toxin. Journal of Biological Chemistry, 1991, 266, 2494-8.	1.6	23
452	Helicobacter pylori Infection Negatively Influences Pregnancy Outcome in a Mouse Model. Helicobacter, 2004, 9, 152-157.	1.6	22
453	A Non-Living Nasal Influenza Vaccine Can Induce Major Humoral and Cellular Immune Responses in Humans without the Need for Adjuvants. Hum Vaccin, 2005, 1, 85-90.	2.4	22
454	Crystal structure of a nonâ€ŧoxic mutant of heatâ€ŀabile enterotoxin, which is a potent mucosal adjuvant. Protein Science, 1997, 6, 2650-2654.	3.1	22
455	Toward a Meningitis-Free World. Science Translational Medicine, 2012, 4, 123ps5.	5.8	22
456	Vaccines: Science, health, longevity, and wealth. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12282-12282.	3.3	22
457	Sustainable vaccine development: a vaccine manufacturer's perspective. Current Opinion in Immunology, 2018, 53, 111-118.	2.4	22
458	On the membrane translocation of diphtheria toxin: at low pH the toxin induces ion channels on cells. EMBO Journal, 1988, 7, 3353-9.	3.5	22
459	Histidine-21 is involved in diphtheria toxin NAD+ binding. Toxicon, 1990, 28, 631-635.	0.8	21
460	The bvg-dependent promoters show similar behaviour in different Bordetella species and share sequence homologies. Molecular Microbiology, 1991, 5, 2493-2498.	1.2	21
461	A novel chromatin-forming histone H1 homologue is encoded by a dispensable and growth-regulated gene in Bordetella pertussis. Molecular Microbiology, 1995, 15, 871-881.	1.2	21
462	LTK63 and LTR72, two mucosal adjuvants ready for clinical trials. International Journal of Medical Microbiology, 2000, 290, 455-461.	1.5	21
463	Bacterial pathogen genomics and vaccines. British Medical Bulletin, 2002, 62, 45-58.	2.7	21
464	Pilus Operon Evolution in Streptococcus pneumoniae Is Driven by Positive Selection and Recombination. PLoS ONE, 2008, 3, e3660.	1.1	21
465	ADITEC: Joining Forces for Next-Generation Vaccines. Science Translational Medicine, 2012, 4, 128cm4.	5.8	21
466	1885, the first rabies vaccination in humans. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12273-12273.	3.3	21
467	Prevention and control of meningococcal outbreaks: The emerging role of serogroup B meningococcal vaccines. Vaccine, 2015, 33, 3628-3635.	1.7	21
468	Developing vaccines for an aging population. Science Translational Medicine, 2015, 7, 281ps8.	5.8	21

#	Article	IF	CITATIONS
469	Vaccines to Overcome Antibiotic Resistance: The Challenge of Burkholderia cenocepacia. Trends in Microbiology, 2020, 28, 315-326.	3.5	21
470	Effect of priming with diphtheria and tetanus toxoids combined with whole-cell pertussis vaccine or with acellular pertussis vaccine on the safety and immunogenicity of a booster dose of an acellular pertussis vaccine containing a genetically inactivated pertussis toxin in fifteen- to twenty-one-month-old children. Journal of Pediatrics, 1995, 127, 238-243.	0.9	20
471	Anatomy of Omicron BA.1 and BA.2 neutralizing antibodies in COVID-19 mRNA vaccinees. Nature Communications, 2022, 13, .	5.8	20
472	Competitive enzyme immunoassay for human chorionic somatomammotropin using the avidin-biotin system. Analytical Biochemistry, 1981, 118, 168-172.	1.1	19
473	Detection of homology to the beta bacteriophage integration site in a wide variety of Corynebacterium spp. Journal of Bacteriology, 1986, 168, 103-108.	1.0	19
474	Development of an Influenza virus Protein Array Using Sortagging Technology. Bioconjugate Chemistry, 2012, 23, 1119-1126.	1.8	19
475	<i><scp>HCV E1E</scp>2â€<scp>MF</scp>59</i> vaccine in chronic hepatitis <scp>C</scp> patients treated with <scp>PEG</scp> â€ <scp>IFN</scp> î±2a and <scp>R</scp> ibavirin: a randomized controlled trial. Journal of Viral Hepatitis, 2014, 21, 458-465.	1.0	19
476	Structure of a protective epitope reveals the importance of acetylation of <i>Neisseria meningitidis</i> serogroup A capsular polysaccharide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29795-29802.	3.3	19
477	Effects of Site-Directed Mutagenesis of <i>Escherichia coli</i> Heat-Labile Enterotoxin on ADP-Ribosyltransferase Activity and Interaction with ADP-Ribosylation Factors. Infection and Immunity, 1999, 67, 259-265.	1.0	19
478	Evolution of functional polymorphism in the gene coding for theHelicobacter pyloricytotoxin. FEMS Microbiology Letters, 2002, 206, 253-258.	0.7	18
479	Transcutaneous Immunization with Cross-Reacting Material CRM ₁₉₇ of Diphtheria Toxin Boosts Functional Antibody Levels in Mice Primed Parenterally with Adsorbed Diphtheria Toxoid Vaccine. Infection and Immunity, 2008, 76, 1766-1773.	1.0	18
480	Lack of Interference with Immunogenicity of a Chimeric Alphavirus Replicon Particle-Based Influenza Vaccine by Preexisting Antivector Immunity. Vaccine Journal, 2012, 19, 991-998.	3.2	18
481	Molecular basis of vaccination. Molecular Aspects of Medicine, 1998, 19, 1-70.	2.7	17
482	Reversal of the CD4+/CD8+T-Cell Ratio in Lymph Node Cells upon In Vitro Mitogenic Stimulation by Highly Purified, Water-Soluble S3-S4 Dimer of Pertussis Toxin. Infection and Immunity, 2001, 69, 3073-3081.	1.0	17
483	Rethinking Influenza. Science, 2009, 326, 50-50.	6.0	17
484	The Factor H Binding Protein of <i>Neisseria meningitidis</i> Interacts with Xenosiderophores in Vitro. Biochemistry, 2012, 51, 9384-9393.	1.2	17
485	Auto-Assembling Detoxified Staphylococcus aureus Alpha-Hemolysin Mimicking the Wild-Type Cytolytic Toxin. Vaccine Journal, 2016, 23, 442-450.	3.2	17
486	4CMenB Immunization Induces Serum Bactericidal Antibodies Against Non-SerogroupÂB Meningococcal Strains in Adolescents. Infectious Diseases and Therapy, 2021, 10, 307-316.	1.8	17

#	Article	IF	CITATIONS
487	Cellular pertussis vaccine containing a Bordetella pertussis strain that produces a nontoxic pertussis toxin molecule. Infection and Immunity, 1992, 60, 1150-1155.	1.0	17
488	Pertussis toxin interferes with superantigen-induced deletion of peripheral T cells without affecting T cell activation in vivo. Inhibition of deletion and associated programmed cell death depends on ADP-ribosyltransferase activity. Journal of Immunology, 1994, 152, 4291-9.	0.4	17
489	Towards third-generation whooping cough vaccines. Trends in Biotechnology, 1991, 9, 232-238.	4.9	16
490	Meningococcal polysaccharide-protein conjugate vaccines. International Journal of Infectious Diseases, 1997, 1, 152-157.	1.5	16
491	Characterisation of a monoclonal antibody and its use to purify the cytotoxin ofHelicobacter pylori. FEMS Microbiology Letters, 1998, 165, 79-84.	0.7	16
492	The Vaccine Containing Recombinant Pertussis Toxin Induces Early and Long-Lasting Protection. Biologicals, 1999, 27, 99-102.	0.5	16
493	Development of V2-deleted trimeric envelope vaccine candidates from human immunodeficiency virus type 1 (HIV-1) subtypes B and C. Microbes and Infection, 2005, 7, 1386-1391.	1.0	16
494	Role of ARF6, Rab11 and External Hsp90 in the Trafficking and Recycling of Recombinant-Soluble Neisseria meningitidis Adhesin A (rNadA) in Human Epithelial Cells. PLoS ONE, 2014, 9, e110047.	1.1	16
495	Towards a more comprehensive approach for a total economic assessment of vaccines?. Journal of Market Access & Health Policy, 2017, 5, 1335162.	0.8	16
496	Identification of subregions of Bordetella pertussis filamentous hemagglutinin that stimulate human T-cell responses. Infection and Immunity, 1991, 59, 3313-3315.	1.0	16
497	Studies of the antigenic structure of two cross-reacting proteins, pertussis and cholera toxins, using synthetic peptides. Molecular Immunology, 1989, 26, 95-100.	1.0	15
498	Detection of a Vacuolating Cytotoxin in Stools from Children with Diarrhea. Clinical Infectious Diseases, 1996, 23, 101-106.	2.9	15
499	In vitro selection of high affinity HspR-binding sites within the genome of Helicobacter pylori. Gene, 2002, 283, 63-69.	1.0	15
500	Post-hoc analysis from phase III trials of human papillomavirus vaccines: considerations on impact on non-vaccine types. Expert Review of Vaccines, 2019, 18, 309-322.	2.0	15
501	Vaccine innovations for emerging infectious diseases—a symposium report. Annals of the New York Academy of Sciences, 2020, 1462, 14-26.	1.8	15
502	Identification of a 35-kilodalton Mycobacterium tuberculosis protein containing B- and T-cell epitopes. Infection and Immunity, 1990, 58, 245-251.	1.0	15
503	Monoclonal antibodies against pertussis toxin subunits. FEMS Microbiology Letters, 1988, 51, 7-11.	0.7	14
504	Action site and cellular effects of cytotoxin VacA produced byHelicobacter pylori. Folia Microbiologica, 1998, 43, 279-284.	1.1	14

RINO RAPPUOLI

#	Article	IF	CITATIONS
505	Helicobacter pylori. Journal of Experimental Medicine, 2003, 197, 807-811.	4.2	14
506	Co-Stimulation of T cells via CD28 inhibits human IgE production; reversal by Pertussis toxin. Clinical and Experimental Immunology, 2008, 99, 473-478.	1.1	14
507	Bringing influenza vaccines into the 21st century. Human Vaccines and Immunotherapeutics, 2014, 10, 600-604.	1.4	14
508	Meningococcal factor H binding protein as immune evasion factor and vaccine antigen. FEBS Letters, 2020, 594, 2657-2669.	1.3	14
509	The respiratory syncytial virus (RSV) prefusion Fâ€protein functional antibody repertoire in adult healthy donors. EMBO Molecular Medicine, 2021, 13, e14035.	3.3	14
510	A C terminus cysteine of diphtheria toxin B chain involved in immunotoxin cell penetration and cytotoxicity. Journal of Immunology, 1988, 140, 2466-71.	0.4	14
511	The trillion dollar vaccine gap. Science Translational Medicine, 2022, 14, eabn4342.	5.8	14
512	Functional analysis of the pertussis toxin promoter. Research in Microbiology, 1992, 143, 671-681.	1.0	13
513	Development and clinical testing of an acellular pertussis vaccine containing genetically detoxified pertussis toxin. Immunobiology, 1992, 184, 230-239.	0.8	13
514	A structural overview of the Helicobacter cytotoxin. International Journal of Medical Microbiology, 2000, 290, 375-379.	1.5	13
515	vir90, a virulence-activated gene coding for a Bordetella pertussis iron-regulated outer membrane protein. Research in Microbiology, 2003, 154, 443-450.	1.0	13
516	Effect of heparin binding on Helicobacter pylori resistance to serum. Journal of Medical Microbiology, 2004, 53, 9-12.	0.7	13
517	A priority-setting aid for new vaccine candidates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3199-3200.	3.3	13
518	Multicriteria decision analysis and core values for enhancing vaccine-related decision-making. Science Translational Medicine, 2016, 8, 345ps14.	5.8	13
519	Beyond cost-effectiveness: Using systems analysis for infectious disease preparedness. Vaccine, 2017, 35, A46-A49.	1.7	13
520	Vaccines 2020: The era of the digital vaccine is here. Science Translational Medicine, 2021, 13, eabm3249.	5.8	13
521	Cytoskeletal alterations as a parameter for assessment of toxicity. Xenobiotica, 1988, 18, 715-724.	0.5	12
522	TPA and butyrate increase cell sensitivity to the vacuolating toxin ofHelicobacter pylori. FEBS Letters, 1998, 436, 218-222.	1.3	12

#	Article	IF	CITATIONS
523	New strategies for the prevention and treatment of Helicobacter pylori infection. Expert Opinion on Investigational Drugs, 2002, 11, 1127-1138.	1.9	12
524	Inside sensors detecting outside pathogens. Nature Immunology, 2004, 5, 1099-1100.	7.0	12
525	Expression and selective upâ€regulation of toxinâ€related mono ADPâ€ribosyltransferases by pathogenâ€associated molecular patterns in alveolar epithelial cells. FEBS Letters, 2007, 581, 4199-4204.	1.3	12
526	Involvement of the intrinsic and extrinsic cellâ€death pathways in the induction of apoptosis of mature lymphocytes by the <i>Escherichia coli</i> heatâ€labile enterotoxin. European Journal of Immunology, 2009, 39, 439-446.	1.6	12
527	Perspectives on vaccine development for the elderly. Current Opinion in Immunology, 2013, 25, 529-534.	2.4	12
528	Aflunov®: a vaccine tailored for pre-pandemic and pandemic approaches against influenza. Expert Opinion on Biological Therapy, 2013, 13, 121-135.	1.4	12
529	Human monoclonal antibodies for discovery, therapy, and vaccine acceleration. Current Opinion in Immunology, 2019, 59, 130-134.	2.4	12
530	Molecular epidemiology of nasopharyngeal corynebacteria in healthy adults from an area where diphtheria vaccination has been extensively practiced. European Journal of Epidemiology, 1992, 8, 560-567.	2.5	11
531	Pathogenicity island mediatesHelicobacter pylori interaction with the host. Folia Microbiologica, 1998, 43, 275-278.	1.1	11
532	Characterization and Immunogenicity of the CagF Protein of the cag Pathogenicity Island of Helicobacter pylori. Infection and Immunity, 2002, 70, 6468-6470.	1.0	11
533	An unwanted guest:Neisseria meningitidis– carriage, risk for invasive disease and the impact of vaccination with insight on Italy incidence. Expert Review of Anti-Infective Therapy, 2017, 15, 689-701.	2.0	11
534	Vaccines as remedy for antimicrobial resistance and emerging infections. Current Opinion in Immunology, 2020, 65, 102-106.	2.4	11
535	IL-1 stimulates a diverging signaling pathway in EL4 6.1 thymoma cells. IL-2 release, but not IL-2 receptor expression, is sensitive to pertussis toxin. Journal of Immunology, 1995, 155, 181-9.	0.4	11
536	Acellular pertussis vaccines: a turning point in infant and adolescent vaccination. Infectious Agents and Disease, 1996, 5, 21-8.	1.2	11
537	The reaction of bacterial toxins with formaldehyde and its use for antigen stabilization. Developments in Biological Standardization, 1996, 87, 125-34.	0.2	11
538	Are serological responses to acellular pertussis antigens sufficient criteria to ensure that new combination vaccines are effective for prevention of disease?. Developments in Biological Standardization, 1997, 89, 379-89.	0.2	11
539	Adjuvant effect of non-toxic mutants of E. coli heat-labile enterotoxin following intranasal, oral and intravaginal immunization. Developments in Biological Standardization, 1998, 92, 123-6.	0.2	11
540	Identification of an Iron-Sulfur Cluster That Modulates the Enzymatic Activity in NarE, a Neisseria meningitidis ADP-ribosyltransferase. Journal of Biological Chemistry, 2009, 284, 33040-33047.	1.6	10

RINO RAPPUOLI

#	Article	IF	CITATIONS
541	2. How is the economic assessment of vaccines performed today?. Journal of Market Access & Health Policy, 2017, 5, 1335163.	0.8	10
542	Biochemical and biological activities of recombinant S1 subunit of pertussis toxin. Infection and Immunity, 1990, 58, 999-1003.	1.0	10
543	Rationalizing the design of a broad coverage Shigella vaccine based on evaluation of immunological cross-reactivity among S. flexneri serotypes. PLoS Neglected Tropical Diseases, 2021, 15, e0009826.	1.3	10
544	Auto ADPâ€ribosylation of NarE, a Neisseria meningitidis ADPâ€ribosyltransferase, regulates its catalytic activities. FASEB Journal, 2013, 27, 4723-4730.	0.2	9
545	Preventing Newborn Infection with Maternal Immunization. Science Translational Medicine, 2013, 5, 195ps11.	5.8	9
546	Core values for vaccine evaluation. Vaccine, 2017, 35, A57-A62.	1.7	9
547	Improving accountability in vaccine decision-making. Expert Review of Vaccines, 2017, 16, 1057-1066.	2.0	9
548	Vision for a systems architecture to integrate and transform population health. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12595-12602.	3.3	9
549	Antibodies, epicenter of SARS-CoV-2 immunology. Cell Death and Differentiation, 2021, 28, 821-824.	5.0	9
550	Generation of human monoclonal antibodies that confer protection against pertussis toxin. Infection and Immunity, 1992, 60, 1258-1260.	1.0	9
551	Immunology and Technology of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccines. Pharmacological Reviews, 2022, 74, 313-339.	7.1	9
552	Antibody-dependent macrophage-mediated activity against Helicobacter pylori in the absence of complement. European Journal of Immunology, 2002, 32, 2721-2725.	1.6	8
553	The Escherichia coli heat-labile enterotoxin induces apoptosis of immature lymphocytesin vivo via a glucocorticoid-dependent pathway. European Journal of Immunology, 2005, 35, 3505-3515.	1.6	8
554	Strategic Planning in Population Health and Public Health Practice: A Call to Action for Higher Education. Milbank Quarterly, 2016, 94, 109-125.	2.1	8
555	Editorial overview: Vaccines: novel technologies for vaccine development. Current Opinion in Immunology, 2016, 41, v-vii.	2.4	8
556	3. How comprehensive can we be in the economic assessment of vaccines?. Journal of Market Access & Health Policy, 2017, 5, 1336044.	0.8	8
557	The pertussis toxin liberation genes of Bordetella pertussis are transcriptionally linked to the pertussis toxin operon. Infection and Immunity, 1996, 64, 1458-1460.	1.0	8
558	Acellular pertussis vaccine composed of genetically inactivated pertussis toxin. Physiological Chemistry and Physics and Medical NMR, 1995, 27, 355-61.	0.2	8

#	Article	IF	CITATIONS
559	Improving membrane filtration processes. Trends in Biotechnology, 1995, 13, 129-131.	4.9	7
560	Novel Molecular Biology Approaches to Acellular Vaccines. Biotechnology Annual Review, 1996, 2, 391-408.	2.1	7
561	DNA binding of the Bordetella pertussis H1 homolog alters in vitro DNA flexibility. Journal of Bacteriology, 1996, 178, 2982-2985.	1.0	7
562	Changing route: aerosol vaccine against tuberculosis. Lancet Infectious Diseases, The, 2014, 14, 901-902.	4.6	7
563	Compare voting systems to improve them. Nature, 2017, 541, 151-153.	13.7	7
564	Four-component Meningococcal Serogroup B Vaccine Induces Antibodies With Bactericidal Activity Against Diverse Outbreak Strains in Adolescents. Pediatric Infectious Disease Journal, 2021, 40, e66-e71.	1.1	7
565	DNA sequence homology betweenattB-related sites ofCorynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and theattP side of AŽÂ³-Cornephage. FEMS Microbiology Letters, 1990, 66, 299-301.	0.7	6
566	Toll-free immunity?. Nature Medicine, 2008, 14, 1318-1319.	15.2	6
567	H1N1: Can a Pandemic Cycle Be Broken?. Science Translational Medicine, 2010, 2, 24ps14.	5.8	6
568	Improving influenza vaccines. Expert Review of Vaccines, 2012, 11, 871-872.	2.0	6
569	Detection and physical map of a omega tox+-related defective prophage in Corynebacterium diphtheriae Belfanti 1030(-)tox Journal of Virology, 1985, 54, 194-198.	1.5	6
570	4CMenB vaccine induces elite cross-protective human antibodies that compete with human factor H for binding to meningococcal fHbp. PLoS Pathogens, 2020, 16, e1008882.	2.1	6
571	Safety and serum distribution of anti-SARS-CoV-2 monoclonal antibody MAD0004J08 after intramuscular injection. Nature Communications, 2022, 13, 2263.	5.8	6
572	The nucleotide sequence of the gene coding for diphtheria toxoid CRM176. Nucleic Acids Research, 1987, 15, 5897-5897.	6.5	5
573	Determination of diphtheria toxin neutralizing antibody titers with a cell protein synthesis inhibition assay. Medical Microbiology and Immunology, 1991, 180, 29-35.	2.6	5
574	Towards a vaccine against <i>Escherichia coli</i> -associated urinary tract infections. Future Microbiology, 2010, 5, 351-354.	1.0	5
575	Optimized fluorescent labeling to identify memory B cells specific for Neisseria meningitidis serogroup B vaccine antigens ex vivo. Immunity, Inflammation and Disease, 2013, 1, 3-13.	1.3	5
576	<i>Staphylococcus aureus</i> coagulase R domain, a new evasion mechanism and vaccine target. Journal of Experimental Medicine, 2016, 213, 292-292.	4.2	5

#	Article	IF	CITATIONS
577	Innovative vaccine approaches—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1511, 59-86.	1.8	5
578	Effects of the insertion of a nonapeptide from murine IL-1Î ² on the immunogenicity of carrier proteins delivered by live attenuated Salmonella. Archives of Microbiology, 1998, 169, 113-119.	1.0	4
579	Blocking bacterial enterotoxins. Nature Medicine, 2000, 6, 257-258.	15.2	4
580	The real cost of an affordable vaccine for meningococcus A. Lancet, The, 2003, 362, 250-251.	6.3	4
581	Long-term solutions for the problem of vaccine shortages. Expert Opinion on Biological Therapy, 2004, 4, 989-992.	1.4	4
582	Investigation on the Effect of Immune Selection on Resistance to Bactericidal Antibodies to Group B Meningococci In Vitro. Vaccine Journal, 2009, 16, 1693-1695.	3.2	4
583	Learning from the 2009 H1N1 pandemic: prospects for more broadly effective influenza vaccines. Journal of Molecular Cell Biology, 2011, 3, 144-146.	1.5	4
584	Finding Epitopes with Computers. Chemistry and Biology, 2013, 20, 1205-1206.	6.2	4
585	Cost effectiveness has its place, but so does common sense. BMJ, The, 2014, 349, g6759-g6759.	3.0	4
586	Editorial: A Global Perspective on Vaccines: Priorities, Challenges and Online Information. Frontiers in Immunology, 2019, 10, 2556.	2.2	4
587	Timeline: Vaccines. Cell, 2020, 183, 552.	13.5	4
588	Immunological fingerprint of 4CMenB recombinant antigens via protein microarray reveals key immunosignatures correlating with bactericidal activity. Nature Communications, 2020, 11, 4994.	5.8	4
589	Development of vaccines at the time of COVID-19. MicroLife, 2020, 1, uqaa003.	1.0	4
590	Reply to: Hultström et al., Genetic determinants of mannose-binding lectin activity predispose to thromboembolic complications in critical COVID-19. Mannose-binding lectin genetics in COVID-19. Nature Immunology, 2022, 23, 865-867.	7.0	4
591	Production of Large Quantities of Diphtheria Toxoid CRM45. Bio/technology, 1985, 3, 161-163.	1.9	3
592	[28] Selective immunotoxins prepared with mutant diphtheria toxins coupled to monoclonal antibodies. Methods in Enzymology, 1989, 178, 404-422.	0.4	3
593	Host–microbe interactions: bacteria. Current Opinion in Microbiology, 2001, 4, 13-15.	2.3	3
594	GITR contributes to the systemic adjuvanticity of the <i>Escherichia coli</i> heatâ€labile enterotoxin. European Journal of Immunology, 2010, 40, 754-763.	1.6	3

#	Article	IF	CITATIONS
595	Vaccine adjuvants: the future is bright. Expert Review of Vaccines, 2013, 12, 727-729.	2.0	3
596	Editorial: Advanced Immunization Technologies for Next Generation Vaccines. Frontiers in Immunology, 2020, 11, 878.	2.2	3
597	Wild-type wine Saccharomyces cerevisiae as a tool to evaluate the effects on eukaryotic life of locally used herbicides. International Journal of Ecodynamics, 2006, 1, 266-283.	0.4	3
598	Molecular approaches for safer and stronger vaccines. Swiss Medical Weekly, 1999, 129, 1744-8.	0.8	3
599	NMR studies on the structure/function correlations of T-cell-epitope analogs from pertussis toxin. FEBS Journal, 1998, 254, 313-317.	0.2	2
600	Phase I Safety and Immunogenicity of A Three-Component H. Pylori Vaccine. Clinical Pharmacology and Therapeutics, 2003, 73, P34-P34.	2.3	2
601	Editorial overview: Vaccines 2020. Current Opinion in Immunology, 2020, 65, iii.	2.4	2
602	Bacteriophages, a multi-tool to fight infectious disease. Med, 2021, 2, 209-210.	2.2	2
603	Rapid generation of Shigella flexneri GMMA displaying natural or new and cross-reactive O-Antigens. Npj Vaccines, 2022, 7, .	2.9	2
604	Formaldehyde-treatment of Proteins Constrains Recognition by T Cells In Vitro But Not In Vivo. Biologicals, 1993, 21, 23.	0.5	1
605	Current Developments in New Vaccines for Adolescents. Biologicals, 1997, 25, 159-163.	0.5	1
606	Problems in assaying neutrophil activators. Trends in Microbiology, 2001, 9, 314-315.	3.5	1
607	Models for bacterial infectious diseases: Helicobacter pylori. Drug Discovery Today: Disease Models, 2004, 1, 95-100.	1.2	1
608	Meningococcal diseases: From genomes to vaccines. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 129-136.	0.5	1
609	Introduction. Seminars in Immunology, 2013, 25, 87-88.	2.7	1
610	Immunisation against meningococcus B. Lancet, The, 2013, 382, 935-936.	6.3	1
611	Editorial overview: Preventive and therapeutic vaccines: Vaccination against viral disease — current advances and challenges. Current Opinion in Virology, 2017, 23, vi-viii.	2.6	1
612	Short-term and mid-term solutions for influenza vaccines. Lancet Infectious Diseases, The, 2018, 18, 832-833.	4.6	1

#	Article	IF	CITATIONS
613	Inhibiting neuraminidase can make the difference. Journal of Experimental Medicine, 2019, 216, 251-252.	4.2	1
614	Drugs and Vaccines Will Be Necessary to Control Tuberculosis. Applied Sciences (Switzerland), 2020, 10, 4026.	1.3	1
615	Further analysis of the sequence of the S1 subunit of pertussis toxin. Infection and Immunity, 1991, 59, 1177-1179.	1.0	1
616	Vaccinology – Editorial. Seminars in Immunology, 2020, 50, 101439.	2.7	1
617	Antimicrobial Resistance: A Tale of Nasty Enemies and Powerful Weapons. Frontiers for Young Minds, 0, 8, .	0.8	1
618	Building an insurance against modern pandemics. Current Opinion in Investigational Drugs, 2010, 11, 126-30.	2.3	1
619	Development and Clinical Results with an Acellular Vaccine Containing Genetically Detoxified Pertussis Toxin. Biologicals, 1993, 21, 2-3.	0.5	0
620	Recombinant DNA vaccines: Rationale and strategy. Trends in Microbiology, 1993, 1, 73-74.	3.5	0
621	Development and Clinical Results with an Acellular Vaccine Containing Genetically Detoxified Pertussis Toxin. Biologicals, 1994, 22, 201.	0.5	0
622	Pertactin antigens extracted from Bordetella pertussis and Bordetella bronchiseptica differ in the isoelectric point. Archives of Microbiology, 1997, 168, 437-440.	1.0	0
623	7.6 Molecular Genetics of Bordetella Pertussis Virulence. Methods in Microbiology, 1998, 27, 395-406.	0.4	0
624	An abundance of bacterial ADP-ribosyltransferases – implications for the origin of exotoxins and their human homologues. Trends in Microbiology, 2001, 9, 308.	3.5	0
625	Allelic variation in the vacA gene of Helicobacter pylori isolated from Chinese patients. Chinese Journal of Digestive Diseases, 2001, 2, 17.	1.1	0
626	Problems in identifying microbial-derived neutrophil activators, focusing on Helicobacter pylori. Trends in Microbiology, 2002, 10, 14.	3.5	0
627	Safety and immunogenicity in animals of subunit influenza vaccine given intranasally with mutants of Escherichia coli heat-labile enterotoxin (LT). International Congress Series, 2004, 1263, 640-643.	0.2	0
628	Mechanisms of pathogenesis and prevention of meningococcal disease. Drug Discovery Today Disease Mechanisms, 2006, 3, 273-279.	0.8	0
629	Jeanâ€Marc Reyrat (29/04/1967–28/10/2009). Molecular Microbiology, 2010, 75, 1059-1060.	1.2	0
630	Human papillomavirus E2 protein: a potential key regulator of viral cell pathogenesis. Pathogens and Global Health, 2012, 106, 141-141.	1.0	0

#	Article	IF	CITATIONS
631	Introduction to the vaccine supplement. Vaccine, 2017, 35, A1.	1.7	0
632	Farewell Stan Stanley Falkow: 1934–2018. Environmental Microbiology, 2018, 20, 2322-2333.	1.8	0
633	Meningococcal Vaccines: A Technological Revolution. Frontiers for Young Minds, 0, 8, .	0.8	Ο
634	Recent advances in the prevention of meningococcal B disease: Real evidence from 4CMenB vaccination. Vacunas (English Edition), 2021, 22, 189-202.	0.3	0
635	Development of the new acellular recombinant pertussis vaccine. Archives De L'Institut Pasteur De Tunis, 1994, 71, 557-63.	0.1	0
636	Physicochemical characterisation of the pertussis vaccine. Developments in Biologicals, 2000, 103, 175-88.	0.4	0