Salvatore D Lepore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6618295/publications.pdf

Version: 2024-02-01

361413 477307 49 990 20 29 citations h-index g-index papers 57 57 57 1010 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Use of Sonication for the Coupling of Sterically Hindered Substrates in the Phenolic Mitsunobu Reaction. Journal of Organic Chemistry, 2003, 68, 8261-8263.	3.2	100
2	Recent advances in heterolytic nucleofugal leaving groups. Tetrahedron, 2007, 63, 5103-5122.	1.9	65
3	Total Synthesis of Stipiamide and Designed Polyenes as New Agents for the Reversal of Multidrug Resistance. Journal of the American Chemical Society, 1997, 119, 12159-12169.	13.7	59
4	Synthesis of Stipiamide and a New Multidrug Resistance Reversal Agent, 6,7-Dehydrostipiamide. Journal of the American Chemical Society, 1997, 119, 2327-2328.	13.7	46
5	Studies on the Manganese-Mediated Isomerization of Alkynyl Carbonyls to Allenyl Carbonyls. Journal of Organic Chemistry, 2005, 70, 7443-7446.	3.2	42
6	Use of the Kaiser Oxime Resin in the Solid-Phase Synthesis of 3-Aminobenzisoxazoles. Journal of Organic Chemistry, 1999, 64, 4547-4550.	3.2	38
7	Selective dihydroxylation of non-conjugated dienes in favor of the terminal olefin. Tetrahedron Letters, 1997, 38, 4043-4046.	1.4	36
8	Selective One-Pot Synthesis of Allenyl and Alkynyl Esters from β-Ketoesters. Journal of Organic Chemistry, 2009, 74, 158-162.	3.2	34
9	Catalytic Synthesis of Nonracemic Azaproline Derivatives by Cyclization of βâ€Alkynyl Hydrazines under Kinetic Resolution Conditions. Angewandte Chemie - International Edition, 2011, 50, 8338-8341.	13.8	33
10	Anion-Catalyzed Addition of \hat{l}^3 -Silylallenyl Esters to Aldehydes: A New Entry into [3.2.1] Bicyclic Natural Products. Journal of the American Chemical Society, 2009, 131, 4196-4197.	13.7	32
11	Rapid Conversion of Hindered Arylsulfonates to Alkyl Chlorides with Retention of Configuration. Journal of Organic Chemistry, 2006, 71, 3285-3286.	3.2	31
12	Zinc(II) Catalyzed Conversion of Alkynes to Vinyl Triflates in the Presence of Silyl Triflates. Organic Letters, 2014, 16, 4154-4157.	4.6	30
13	Michaelâ^'Stork Addition of Cyclopentyl Enamine to Allenyl Ketones and Esters. Journal of Organic Chemistry, 2005, 70, 8239-8241.	3.2	27
14	Arylsulfonate-Based Nucleophile Assisting Leaving Groups. Journal of Organic Chemistry, 2005, 70, 8117-8121.	3.2	26
15	Studies on the Base-Promoted Conversion of Conjugated Alkynyl Esters to α-Substituted α-Allenyl Esters. Journal of Organic Chemistry, 2004, 69, 9171-9175.	3.2	24
16	Studies on the Synthetic Compatibility of Aryloxime Linkers in the Solid-Phase Synthesis of 3-Aminobenzisoxazoles. Journal of Organic Chemistry, 2000, 65, 2924-2932.	3.2	23
17	Ammonium catalyzed cyclitive additions: evidence for a cation–π interaction with alkynes. Chemical Communications, 2016, 52, 2311-2313.	4.1	23
18	Nucleophile Assisting Leaving Groups: A Strategy for Aliphatic 18F-Fluorination. Journal of Organic Chemistry, 2009, 74, 5290-5296.	3.2	22

#	Article	IF	CITATIONS
19	Asymmetric Protonation of Cumulenolates: Synthesis of Allenyl Aldehydes Facilitated by an Organomanganese Auxiliary. Organic Letters, 2016, 18, 1230-1233.	4.6	22
20	Stereoretentive Halogenations and Azidations with Titanium(IV) Enabled by Chelating Leaving Groups. Angewandte Chemie - International Edition, 2008, 47, 7511-7514.	13.8	21
21	Application of Aryloximes as Solid-Phase Ketone Linkers. Organic Letters, 2003, 5, 7-10.	4.6	18
22	Organo-Manganese η ² -Auxiliary Directed Reactions: AÂDiastereoselective Approach to 2,3-Allenols. Organic Letters, 2015, 17, 900-903.	4.6	17
23	Manganese Î-2-Complexes as Auxiliaries for Stereoselective Aldol Synthesis of Allenyl Carbinols. Organic Letters, 2010, 12, 5078-5080.	4.6	16
24	Stereoretentive Copper(II)â€Catalyzed Ritter Reactions of Secondary Cycloalkanols. Advanced Synthesis and Catalysis, 2013, 355, 3071-3076.	4.3	15
25	Synthesis of cyclopentadienylmanganese tricarbonyl resins as potential olefin traceless supports. Tetrahedron Letters, 2002, 43, 7357-7360.	1.4	14
26	Stereoretentive Chlorination of Cyclic Alcohols Catalyzed by Titanium(IV) Tetrachloride: Evidence for a Front Side Attack Mechanism. Journal of Organic Chemistry, 2013, 78, 2118-2127.	3.2	14
27	Preparation of 2-hydroxybenzamidines from 3-aminobenzisoxazoles. Tetrahedron Letters, 2002, 43, 8777-8779.	1.4	13
28	Deconjugative Conversion of \hat{l}_{\pm} -Alkynyl Esters to \hat{l}_{\pm} , \hat{l}_{\pm} -Disubstituted \hat{l}^2 -Alkynyl Esters. Journal of Organic Chemistry, 2005, 70, 4546-4548.	3.2	13
29	A Direct and Stereoretentive Synthesis of Amides from Cyclic Alcohols. European Journal of Organic Chemistry, 2011, 2011, 7057-7061.	2.4	13
30	Efficient synthesis of Fmocâ€protected phosphinic pseudodipeptides: Building blocks for the synthesis of matrix metalloproteinase inhibitors. Biopolymers, 2011, 96, 1-3.	2.4	13
31	Annulation Reactions of Allenyl Esters: An Approach to Bicyclic Diones and Medium-Sized Rings. Journal of Organic Chemistry, 2014, 79, 9402-9407.	3.2	13
32	Asymmetric additions to dichlorophenyldioxane, a new chiral acetal. Tetrahedron Letters, 1995, 36, 9149-9152.	1.4	12
33	The use of 18-crown-6 as an ionizable phase label for the expedited synthesis of small molecules. Tetrahedron Letters, 2001, 42, 6437-6439.	1.4	12
34	Enhanced nucleophilic fluorination and radiofluorination of organosilanes appended with potassium-chelating leaving groups. Journal of Fluorine Chemistry, 2014, 158, 48-52.	1.7	11
35	Alkyne Cycloadditions Mediated by Tetrabutylammonium Fluoride: A Unified and Diversifiable Route to Isoxazolines and Pyrazolines. Organic Letters, 2017, 19, 3695-3698.	4.6	11
36	Synthesis of methyl 2-oxo-5-vinyl-2,5-tetrahydrofuran-3-carboxylate. Tetrahedron Letters, 2006, 47, 1625-1626.	1.4	7

3

#	Article	IF	Citations
37	Crown Ether Nucleophilic Catalysts (CENCs): Agents for Enhanced Silicon Radiofluorination. Journal of Organic Chemistry, 2017, 82, 2329-2335.	3.2	7
38	Teaching Experiment To Elucidate a Cationâ^Ï€ Effect in an Alkyne Cycloaddition Reaction and Illustrate Hypothesis-Driven Design of Experiments. Journal of Chemical Education, 2017, 94, 240-243.	2.3	5
39	Allenoate Prenucleophiles: A Triply Diastereoselective Approach to β-Hydroxy Esters Containing All-Carbon α-Quaternary Centers. Organic Letters, 2019, 21, 7952-7955.	4.6	5
40	Resveratrol-Inspired Bridged Bicyclic Compounds: A New Compound Class for the Protection of Synaptic Function from Acute Oxidative Stress. ACS Chemical Neuroscience, 2019, 10, 221-225.	3.5	5
41	Diversification reactions of \hat{I}^3 -silyl allenyl esters: selective conversion to all-carbon quaternary centers and \hat{I}^3 -allene dicarbinols. Chemical Communications, 2017, 53, 5125-5127.	4.1	4
42	Synthesis of Novel C-Pivot Lariat 18-Crown-6 Ethers and Their Efficient Purification. Synlett, 2015, 26, 1977-1980.	1.8	3
43	Allenyl esters as quenching agents for ruthenium olefin metathesis catalysts. Tetrahedron Letters, 2017, 58, 106-108.	1.4	3
44	Carbon-Carbon Bond Formation Facilitated by π-Complexed Organometallic Auxiliaries: An Overview. Letters in Organic Chemistry, 2019, 16, 689-696.	0.5	2
45	Diastereoselective additions of H-phosphinates to alkenyl ketones under phase-transfer conditions. Chemical Communications, 2022, , .	4.1	1
46	Use of Sonication for the Coupling of Sterically Hindered Substrates in the Phenolic Mitsunobu Reaction ChemInform, 2004, 35, no.	0.0	0
47	Studies on the Base-Promoted Conversion of Conjugated Alkynyl Esters to ?-Allenyl Esters ChemInform, 2005, 36, no.	0.0	0
48	Deconjugative Conversion of \hat{l}_{\pm} -Alkynyl Esters to \hat{l}_{\pm} , \hat{l}_{\pm} -Disubstituted \hat{l}^2 -Alkynyl Esters ChemInform, 2005, 36, no.	0.0	0
49	Chiral allenylcarbonyls – underexploited building blocks for complex synthesis. Letters in Organic Chemistry, 2021, 19, .	0.5	0