Richard Iggo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6617462/publications.pdf

Version: 2024-02-01

1040056 1281871 2,513 12 9 11 citations h-index g-index papers 13 13 13 3846 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modeling Breast Cancer in Organoid and Intraductal Models. Methods in Molecular Biology, 2022, 2471, 235-257.	0.9	1
2	Lentiviral Transduction of Mammary Epithelial Cells. Methods in Molecular Biology, 2022, 2471, 159-183.	0.9	4
3	Post-transcriptional Gene Regulation by MicroRNA-194 Promotes Neuroendocrine Transdifferentiation in Prostate Cancer. Cell Reports, 2021, 34, 108585.	6.4	33
4	The androgen receptor is a tumor suppressor in estrogen receptor–positive breast cancer. Nature Medicine, 2021, 27, 310-320.	30.7	122
5	Patterns of genomic change in residual disease after neoadjuvant chemotherapy for estrogen receptor-positive and HER2-negative breast cancer. British Journal of Cancer, 2021, 125, 1356-1364.	6.4	3
6	Molecular apocrine tumours in EORTC 10994/BIG 1-00 phase III study: pathological response after neoadjuvant chemotherapy and clinical outcomes. British Journal of Cancer, 2019, 120, 913-921.	6.4	11
7	The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours. Journal of Pathology, 2016, 240, 256-261.	4.5	31
8	Clinical and genomic analysis of a randomised phase II study evaluating anastrozole and fulvestrant in postmenopausal patients treated for large operable or locally advanced hormone-receptor-positive breast cancer. British Journal of Cancer, 2015, 113, 585-594.	6.4	23
9	TP53 status for prediction of sensitivity to taxane versus non-taxane neoadjuvant chemotherapy in breast cancer (EORTC 10994/BIG 1-00): a randomised phase 3 trial. Lancet Oncology, The, 2011, 12, 527-539.	10.7	116
10	A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nature Medicine, $2009,15,68-74.$	30.7	566
11	Identification of molecular apocrine breast tumours by microarray analysis. Oncogene, 2005, 24, 4660-4671.	5.9	694
12	Induction of an interferon response by RNAi vectors in mammalian cells. Nature Genetics, 2003, 34, 263-264.	21.4	907