
Ignacio Pérez de Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6617418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Liver organoids reproduce alpha-1 antitrypsin deficiency-related liver disease. Hepatology International, 2020, 14, 127-137.	4.2	44
2	The EGFR-TMEM167A-p53 Axis Defines the Aggressiveness of Gliomas. Cancers, 2020, 12, 208.	3.7	12
3	Consequences of Lmna Exon 4 Mutations in Myoblast Function. Cells, 2020, 9, 1286.	4.1	6
4	Editorial: Aurora Kinases: Classical Mitotic Roles, Non-Canonical Functions and Translational Views. Frontiers in Oncology, 2017, 7, 48.	2.8	3
5	Aurora A drives early signalling and vesicle dynamics during T-cell activation. Nature Communications, 2016, 7, 11389.	12.8	53
6	Phosphorylation of Targeting Protein for Xenopus Kinesin-like Protein 2 (TPX2) at Threonine 72 in Spindle Assembly. Journal of Biological Chemistry, 2015, 290, 9122-9134.	3.4	17
7	Aurora B Overexpression Causes Aneuploidy and p21 ^{Cip1} Repression during Tumor Development. Molecular and Cellular Biology, 2015, 35, 3566-3578.	2.3	92
8	Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. Nature Communications, 2014, 5, 4226.	12.8	45
9	Aurora kinase A inhibitors: promising agents in antitumoral therapy. Expert Opinion on Therapeutic Targets, 2014, 18, 1377-93.	3.4	53
10	Requirements for Aurora-A in Tissue Regeneration and Tumor Development in Adult Mammals. Cancer Research, 2013, 73, 6804-6815.	0.9	21
11	Aurora B prevents delayed DNA replication and premature mitotic exit by repressing p21 ^{Cip1} . Cell Cycle, 2013, 12, 1030-1041.	2.6	33
12	p15INK4b plays a crucial role in murine lymphoid development and tumorigenesis. Carcinogenesis, 2012, 33, 708-713.	2.8	1
13	Mitotic Stress and Chromosomal Instability in Cancer: The Case for TPX2. Genes and Cancer, 2012, 3, 721-730.	1.9	61
14	Tpx2 Controls Spindle Integrity, Genome Stability, and Tumor Development. Cancer Research, 2012, 72, 1518-1528.	0.9	93
15	Inhibiting Cell Cycle Kinases in Cancer Therapy. , 2012, , 154-188.		1
16	A SUMOylation motif in Aurora-A: implications for spindle dynamics and oncogenesis. Frontiers in Oncology, 2011, 1, 50.	2.8	16
17	Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway. Blood, 2011, 117, 6255-6266.	1.4	60
18	Genetic disruption of aurora B uncovers an essential role for aurora C during early mammalian development. Development (Cambridge), 2011, 138, 2661-2672.	2.5	93

#	Article	IF	CITATIONS
19	Genetic disruption of aurora B uncovers an essential role for aurora C during early mammalian development. Journal of Cell Science, 2011, 124, e1-e1.	2.0	0
20	SUMOylation modulates the function of Aurora-B kinase. Journal of Cell Science, 2010, 123, 2823-2833.	2.0	63
21	Genetic and Epigenetic Silencing of MicroRNA-203 Enhances ABL1 and BCR-ABL1 OncogeneÂExpression. Cancer Cell, 2008, 13, 496-506.	16.8	459
22	Emerging cancer therapeutic opportunities by inhibiting mitotic kinases. Current Opinion in Pharmacology, 2008, 8, 375-383.	3.5	53
23	Control of cell proliferation pathways by microRNAs. Cell Cycle, 2008, 7, 3143-3148.	2.6	304
24	Targeting Cell Cycle Kinases for Cancer Therapy. Current Medicinal Chemistry, 2007, 14, 969-985.	2.4	124
25	PKC Regulates a Farnesyl-Electrostatic Switch on K-Ras that Promotes its Association with Bcl-Xl on Mitochondria and Induces Apoptosis. Molecular Cell, 2006, 21, 481-493.	9.7	421
26	A census of mitotic cancer genes: new insights into tumor cell biology and cancer therapy. Carcinogenesis, 2006, 28, 899-912.	2.8	185
27	Mouse p10, an Alternative Spliced Form of p15INK4b, Inhibits Cell Cycle Progression and Malignant Transformation. Cancer Research, 2005, 65, 3249-3256.	0.9	4
28	The Rgr Oncogene Induces Tumorigenesis in Transgenic Mice. Cancer Research, 2004, 64, 6041-6049.	0.9	11
29	Ras Activation in Jurkat T cells following Low-Grade Stimulation of the T-Cell Receptor Is Specific to N-Ras and Occurs Only on the Golgi Apparatus. Molecular and Cellular Biology, 2004, 24, 3485-3496.	2.3	137
30	Systemic tumor targeting and killing by Sindbis viral vectors. Nature Biotechnology, 2004, 22, 70-77.	17.5	137
31	Genetics of pathological gambling. Journal of Gambling Studies, 2003, 19, 11-22.	1.6	94
32	NF1 modulates the effects of ras oncogenes: Evidence of other NF1 function besides its GAP activity. Journal of Cellular Physiology, 2003, 197, 214-224.	4.1	25
33	Phospholipase Cl̂ ³ activates Ras on the Golgi apparatus by means of RasGRP1. Nature, 2003, 424, 694-698.	27.8	391
34	Mice deficient for N-ras: impaired antiviral immune response and T-cell function. Cancer Research, 2003, 63, 1615-22.	0.9	40
35	Concurrent positive association between pathological gambling and functional DNA polymorphisms at the MAO-A and the 5-HT transporter genes. Molecular Psychiatry, 2002, 7, 927-928.	7.9	40
36	The N-ras proto-oncogene can suppress the malignant phenotype in the presence or absence of its oncogene. Cancer Research, 2002, 62, 4514-8.	0.9	44

#	Article	IF	CITATIONS
37	Psychiatric Comorbidity in Pathological Gamblers Seeking Treatment. American Journal of Psychiatry, 2001, 158, 1733-1735.	7.2	186
38	Psychiatric Comorbidity in Pathological Gamblers Seeking Treatment. American Journal of Psychiatry, 2001, 158, 1733-1735.	7.2	87
39	Pathological gambling and DNA polymorphic markers at MAO-A and MAO-B genes. Molecular Psychiatry, 2000, 5, 105-109.	7.9	82
40	Cellular Response to Oncogenic Ras Involves Induction of the Cdk4 and Cdk6 Inhibitor p15 INK4b. Molecular and Cellular Biology, 2000, 20, 2915-2925.	2.3	160
41	Characterization of the murine p19ARF promoter CpG island and its methylation pattern in primary lymphomas. Carcinogenesis, 2000, 21, 817-821.	2.8	17
42	Cooperative alterations of Rb pathway regulators in mouse primary T cell lymphomas. Carcinogenesis, 1999, 20, 1675-1682.	2.8	21
43	Hypermethylation of the cell cycle inhibitor p15lNK4b 3â€2-untranslated region interferes with its transcriptional regulation in primary lymphomas. Oncogene, 1999, 18, 385-396.	5.9	50
44	A new candidate site for a tumor suppressor gene involved in mouse thymic lymphomagenesis is located on the distal part of chromosome 4. Oncogene, 1998, 17, 925-929.	5.9	33
45	An AC-repeat adjacent to mouse Cdkn2B allows the detection of specific allelic losses in the p15 INK4b and p16 INK4a tumor suppressor genes. Mammalian Genome, 1998, 9, 183-185.	2.2	8
46	Genetic association study between pathological gambling and a functional DNA polymorphism at the D4 receptor gene. Pharmacogenetics and Genomics, 1997, 7, 445-448.	5.7	57
47	Instability of the D4Mit12 microsatellite marker in C57BL/6J × BALB/cJ F ₁ hybrid mice is independent of the tumor phenotype. Cytogenetic and Genome Research, 1997, 78, 221-223.	1.1	0
48	Inactivation of the cyclin-dependent kinase inhibitor p15INK4b by deletion and de novo methylation with independence of p16INK4a alterations in murine primary T-cell lymphomas. Oncogene, 1997, 14, 1361-1370.	5.9	72
49	Frequent allelic losses of 9p21 markers and low incidence of mutations at p16(CDKN2) gene in non-Hodgkin lymphomas of B-cell lineage. Cancer Genetics and Cytogenetics, 1997, 98, 63-68.	1.0	15
50	No association between particular DRD3 and DAT gene polymorphisms and manic-depressive illness in a Spanish sample. Psychiatric Genetics, 1996, 6, 209-212.	1.1	30
51	Allelic losses on chromosome 4 suggest the existence of a candidate tumor suppressor gene region of about 0.6 cM in gamma-radiation-induced mouse primary thymic lymphomas. Oncogene, 1996, 12, 669-76.	5.9	43
52	Familial cosegregation of manic-depressive illness and a form of hereditary cerebellar ataxia. American Journal of Medical Genetics Part A, 1995, 60, 206-209.	2.4	4
53	Eight new polymorphic microsatellites in mouse gene loci. Cytogenetic and Genome Research, 1995, 71, 223-224.	1.1	6
54	A weak association between TH and DRD2 genes and bipolar affective disorder in a Spanish sample Journal of Medical Genetics, 1995, 32, 131-134.	3.2	51

#	Article	IF	CITATIONS
55	No association between dopamine D4 receptor polymorphism and manic depressive illness Journal of Medical Genetics, 1994, 31, 897-898.	3.2	12