Harry R Allcock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6617180/publications.pdf

Version: 2024-02-01

310 papers 11,268 citations

56 h-index 82 g-index

318 all docs

318 docs citations

318 times ranked

6239 citing authors

#	Article	IF	CITATIONS
1	Metallocene and other transition metal derivatives of phosphazene oligomers and polymers: A retrospective summary. Polymer, 2022, 249, 124761.	1.8	3
2	Inhibition of bacterial adhesion and biofilm formation by a textured fluorinated alkoxyphosphazene surface. Bioactive Materials, 2021, 6, 447-459.	8.6	24
3	The Background and Scope of Polyphosphazenes as Biomedical Materials. Regenerative Engineering and Translational Medicine, 2021, 7, 66-75.	1.6	8
4	In Vivo Evaluation of the Regenerative Capability of Glycylglycine Ethyl Ester-Substituted Polyphosphazene and Poly(lactic- <i>co</i> glycolic acid) Blends: A Rabbit Critical-Sized Bone Defect Model. ACS Biomaterials Science and Engineering, 2021, 7, 1564-1572.	2.6	9
5	A Regenerative Polymer Blend Composed of Glycylglycine Ethyl Ester-Substituted Polyphosphazene and Poly(lactic- <i>co</i> -glycolic acid). ACS Applied Polymer Materials, 2020, 2, 1169-1179.	2.0	17
6	Polyphosphazenes: Phosphorus in Inorganic–Organic Polymers. Journal of Organic Chemistry, 2020, 85, 14286-14297.	1.7	31
7	Biomedical applications of polyphosphazenes. Medical Devices & Sensors, 2020, 3, e10113.	2.7	9
8	<scp>Thiopheneâ€based</scp> polyphosphazenes with tunable optoelectronic properties. Journal of Polymer Science, 2020, 58, 3294-3310.	2.0	4
9	New crossâ€inkable poly[bis(octafluoropentoxy) phosphazene] biomaterials: Synthesis, surface characterization, bacterial adhesion, and plasma coagulation responses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3250-3260.	1.6	11
10	Polyphosphazene Elastomers with Alkoxy and Trifluoroethoxy Side Groups. ACS Applied Polymer Materials, 2020, 2, 475-480.	2.0	17
11	Polyphosphazene polymers: The next generation of biomaterials for regenerative engineering and therapeutic drug delivery. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 030801.	0.6	28
12	Generational biodegradable and regenerative polyphosphazene polymers and their blends with poly (lactic-co-glycolic acid). Progress in Polymer Science, 2019, 98, 101146.	11.8	40
13	Hybrid Polyphosphazene–Organosilicon Polymers as Useful Elastomers. ACS Applied Polymer Materials, 2019, 1, 1881-1886.	2.0	5
14	Synthesis, Physicochemical Analysis, and Side Group Optimization of Degradable Dipeptide-Based Polyphosphazenes as Potential Regenerative Biomaterials. ACS Applied Polymer Materials, 2019, 1, 1568-1578.	2.0	24
15	Polyphosphazenes as an Example of the Element-Blocks Approach to New Materials. , 2019, , 167-188.		1
16	Crystal structures of three hexakis(fluoroaryloxy)cyclotriphosphazenes. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 1525-1530.	0.2	1
17	A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses. Acta Biomaterialia, 2018, 67, 87-98.	4.1	28
18	Polyphosphazenes and Cyclotriphosphazenes with Propeller-like Tetraphenylethyleneoxy Side Groups: Tuning Mechanical and Optoelectronic Properties. Macromolecules, 2018, 51, 9974-9981.	2.2	9

#	Article	IF	Citations
19	Molecular Engineering of Polyphosphazenes and SWNT Hybrids with Potential Applications as Electronic Materials. Macromolecules, 2018, 51, 5011-5018.	2.2	8
20	Synthesis, Structures, and Emerging Uses for Poly(organophosphazenes). ACS Symposium Series, 2018, , 3-26.	0.5	8
21	Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering. Regenerative Engineering and Translational Medicine, 2017, 3, 15-31.	1.6	52
22	Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles. Journal of Membrane Science, 2017, 535, 103-112.	4.1	19
23	Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS ONE, 2017, 12, e0174789.	1.1	57
24	Hydrogels based on schiff base formation between an aminoâ€containing polyphosphazene and aldehyde functionalizedâ€dextrans. Journal of Polymer Science Part A, 2016, 54, 2984-2991.	2.5	19
25	Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials, 2016, 102, 87-97.	5.7	189
26	Polyphosphazenes with Cyclotetraphosphazene Side Groups: Synthesis and Elastomeric Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 667-674.	1.9	8
27	Synthesis and Characterization of Trifluoroethoxy Polyphosphazenes Containing Polyhedral Oligomeric Silsesquioxane (POSS) Side Groups. Macromolecules, 2016, 49, 1313-1320.	2.2	30
28	The expanding field of polyphosphazene high polymers. Dalton Transactions, 2016, 45, 1856-1862.	1.6	79
29	New Mixed-Substituent Fluorophosphazene High Polymers and Small Molecule Cyclophosphazene Models: Synthesis, Characterization, and Structure Property Correlations. Macromolecules, 2015, 48, 1483-1492.	2.2	13
30	Polyphosphazenes with amino acid citronellol ester side groups for biomedical applications. European Polymer Journal, 2015, 62, 214-221.	2.6	20
31	Synthesis, Morphology, and Ion Conduction of Polyphosphazene Ammonium Iodide Ionomers. Macromolecules, 2015, 48, 111-118.	2.2	27
32	Polyphosphazene Elastomers Containing Interdigitated Oligo- <i>p</i> p-phenyleneoxy Side Groups: Synthesis, Mechanical Properties, and X-ray Scattering Studies. Macromolecules, 2015, 48, 4882-4890.	2.2	19
33	Phosphazene High Polymers and Models with Cyclic Aliphatic Side Groups: New Structure–Property Relationships. Macromolecules, 2015, 48, 4301-4311.	2.2	46
34	Polyphosphazenes with Immobilized Dyes as Potential Color Filter Materials. ACS Applied Materials & Amp; Interfaces, 2015, 7, 13518-13523.	4.0	14
35	Deposition of calcium hydroxyapatite on negatively charged polyphosphazene surfaces. Journal of Applied Polymer Science, 2015, 132, .	1.3	1
36	Elastomeric Polyphosphazenes with Phenoxy–Cyclotriphosphazene Side Groups. Macromolecules, 2015, 48, 7543-7549.	2.2	28

#	Article	IF	CITATIONS
37	Avoiding cross-linking in iron-polyphosphazene metallo-polymers. Inorganic Chemistry Communication, 2015, 51, 1-3.	1.8	4
38	Terpyridine and 2,6-di(1H-pyrazol-1-yl)pyridine substituted cyclotri- and polyphosphazene ruthenium(II) complexes: Chemical and physical behaviour. Polyhedron, 2015, 85, 429-436.	1.0	16
39	Crosslinkable citronellol containing polyphosphazenes and their biomedical potential. Journal of Polymer Science Part A, 2014, 52, 2258-2265.	2.5	17
40	CHAPTER 7. Phosphazene High Polymers. RSC Polymer Chemistry Series, 2014, , 125-150.	0.1	1
41	Comparison of the Synthesis and Bioerodible Properties of N-Linked Versus O-Linked Amino Acid Substituted Polyphosphazenes. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 164-172.	1.9	16
42	Limits to expanding the PN-F series of polyphosphazene elastomers. Polymer Engineering and Science, 2014, 54, 1827-1832.	1.5	8
43	Nanodisco Balls: Control over Surface <i>versus</i> Core Loading of Diagnostically Active Nanocrystals into Polymer Nanoparticles. ACS Nano, 2014, 8, 9143-9153.	7.3	40
44	Synthesis and Assembly of Novel Poly(organophosphazene) Structures Based on Noncovalent "Host–Guest―Inclusion Complexation. Macromolecules, 2014, 47, 1065-1072.	2.2	37
45	An Unusual Polymer Architecture for the Generation of Elastomeric Properties in Fluorinated Polyphosphazenes. Macromolecules, 2014, 47, 6776-6782.	2.2	24
46	Characterization of hydroxyapatite deposition on biomimetic polyphosphazenes by time-of-flight secondary ion mass spectrometry (ToF-SIMS). RSC Advances, 2014, 4, 19680-19689.	1.7	8
47	A behavioural difference between an iron(II) grafted polyphosphazene and its small molecule cyclophosphazene analogue. Inorganic Chemistry Communication, 2013, 37, 158-161.	1.8	7
48	Biodegradable alanine and phenylalanine alkyl ester polyphosphazenes as potential ligament and tendon tissue scaffolds. Polymer Chemistry, 2013, 4, 600-606.	1.9	43
49	UV-cleavable unimolecular micelles: synthesis and characterization toward photocontrolled drug release carriers. Polymer Chemistry, 2013, 4, 1115-1125.	1.9	32
50	Biodegradable polyphosphazenes containing antibiotics: synthesis, characterization, and hydrolytic release behavior. Polymer Chemistry, 2013, 4, 1826.	1.9	43
51	Synthesis and characterization of novel alternating fluorinated copolymers bearing oligo(ethylene) Tj ETQq $1\ 1$	0.784 <u>3</u> 14	rgBT_{Overloc
52	Injectable and Biodegradable Supramolecular Hydrogels by Inclusion Complexation between Poly(organophosphazenes) and α-Cyclodextrin. Macromolecules, 2013, 46, 2715-2724.	2.2	72
53	Generation of structural diversity in polyphosphazenes. Applied Organometallic Chemistry, 2013, 27, 620-629.	1.7	40
54	Polyphosphazenes as Biomaterials. , 2013, , 83-134.		2

#	Article	IF	CITATIONS
55	Design and Optimization of Polyphosphazene Functionalized Fiber Matrices for Soft Tissue Regeneration. Journal of Biomedical Nanotechnology, 2012, 8, 107-124.	0.5	51
56	Substituent exchange reactions of trimeric and tetrameric aryloxycyclophosphazenes with sodium 2,2,2-trifluoroethoxide. Dalton Transactions, 2012, 41, 2100-2109.	1.6	23
57	Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: <i>iin vitro</i> evaluation with human mesenchymal stem cells. Biomedical Materials (Bristol), 2012, 7, 045016.	1.7	57
58	Synthesis and Micellar Behavior of Novel Amphiphilic Poly[bis(trifluoroethoxy)phosphazene]- <i>co</i> -poly[(dimethylamino)ethyl methacrylate] Block Copolymers. Macromolecules, 2012, 45, 2502-2508.	2.2	30
59	Polyphosphazene elastomers, gels, and other soft materials. Soft Matter, 2012, 8, 7521.	1.2	88
60	Investigation of Apatite Mineralization on Antioxidant Polyphosphazenes for Bone Tissue Engineering. Chemistry of Materials, 2012, 24, 3500-3509.	3.2	59
61	Synthesis and Characterization of Brush-Shaped Hybrid Inorganic/Organic Polymers Based on Polyphosphazenes. Macromolecules, 2012, 45, 1417-1426.	2.2	38
62	Substituent Exchange Reactions with High Polymeric Organophosphazenes. Macromolecules, 2012, 45, 9100-9109.	2,2	18
63	Toward an Iron(II) Spin-Crossover Grafted Phosphazene Polymer. Inorganic Chemistry, 2012, 51, 8307-8316.	1.9	29
64	Synthesis of Phosphonated Polyphosphazenes via Two Synthetic Routes. Macromolecules, 2012, 45, 7684-7691.	2.2	14
65	Design and examination of an antioxidant-containing polyphosphazene scaffold for tissue engineering. Polymer Chemistry, 2012, 3, 778.	1.9	41
66	Substituent Exchange Reactions of Linear Oligomeric Aryloxyphosphazenes with Sodium 2,2,2-Trifluoroethoxide. Inorganic Chemistry, 2012, 51, 11910-11916.	1.9	15
67	Preparation of quaternized organic–inorganic hybrid brush polyphosphazene-co-poly[2-(dimethylamino)ethyl methacrylate] electrospun fibers and their antibacterial properties. Polymer Chemistry, 2012, 3, 2082.	1.9	51
68	Bioerodible polyphosphazenes and their medical potential. Polymer Chemistry, 2012, 3, 578-590.	1.9	136
69	Development and Characterization of Biodegradable Nanocomposite Injectables for Orthopaedic Applications Based on Polyphosphazenes. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 733-752.	1.9	38
70	Polyphosphazenes Containing Vitamin Substituents: Synthesis, Characterization, and Hydrolytic Sensitivity. Macromolecules, 2011, 44, 1355-1364.	2.2	48
71	Phase changes of poly(alkoxyphosphazenes), and their behavior in the presence of oligoisobutylene. Polymer Engineering and Science, 2011, 51, 1693-1700.	1.5	13
72	Biomimetic Structures: Biological Implications of Dipeptideâ€Substituted Polyphosphazene–Polyester Blend Nanofiber Matrices for Loadâ€Bearing Bone Regeneration. Advanced Functional Materials, 2011, 21, 2641-2651.	7.8	129

#	Article	IF	Citations
73	Spectroscopic Studies of Phosphazene Polymers Containing Photoluminescent Metal Complexes. European Journal of Inorganic Chemistry, 2011, 2011, n/a-n/a.	1.0	26
74	Electrolyte infiltration in phosphazene-based dye-sensitized solar cells. Journal of Power Sources, 2011, 196, 5223-5230.	4.0	25
75	The effects of cations and anions on the ionic conductivity of poly[bis(2-(2-methoxyethoxy)ethoxy)phosphazene] doped with lithium and magnesium salts of trifluoromethanesulfonyl)imidate. Solid State Ionics, 2010, 181, 1721-1726.	1.3	49
76	Methoxyethoxyethoxyphosphazenes as ionic conductive fire retardant additives for lithium battery systems. Journal of Power Sources, 2010, 195, 2082-2088.	4.0	72
77	Biomimetic, bioactive etheric polyphosphazeneâ€poly(lactideâ€ <i>co</i> àê€glycolide) blends for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2010, 92A, 114-125.	2.1	46
78	In situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptideâ€Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering. Advanced Functional Materials, 2010, 20, 2794-2806.	7.8	55
79	Porous Structures: In situ Porous Structures: A Unique Polymer Erosion Mechanism in Biodegradable Dipeptide-Based Polyphosphazene and Polyester Blends Producing Matrices for Regenerative Engineering (Adv. Funct. Mater. 17/2010). Advanced Functional Materials, 2010, 20, n/a-n/a.	7.8	27
80	Hybrids of hybrids: nanoâ€scale combinations of polyphosphazenes with other materials. Applied Organometallic Chemistry, 2010, 24, 600-607.	1.7	15
81	Hydrogen bonding in blends of polyesters with dipeptideâ€containing polyphosphazenes. Journal of Applied Polymer Science, 2010, 115, 431-437.	1.3	11
82	Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: Side group effects. Acta Biomaterialia, 2010, 6, 1931-1937.	4.1	92
83	Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Biomaterials, 2010, 31, 4898-4908.	5.7	91
84	lon Conduction and Water Transport in Polyphosphazene-Based Multilayers. Chemistry of Materials, 2010, 22, 226-232.	3.2	17
85	Hydrolysable polylactide–polyphosphazene block copolymers for biomedical applications: synthesis, characterization, and composites with poly(lactic-co-glycolic acid). Polymer Chemistry, 2010, 1, 1459.	1.9	28
86	lodine-containing radio-opaque polyphosphazenes. Polymer Chemistry, 2010, 1, 1467.	1.9	22
87	Synthesis and Characterization of Methionine- and Cysteine-Substituted Phosphazenes. Macromolecules, 2010, 43, 5205-5210.	2.2	26
88	Influence of Different Iodide Salts on the Performance of Dye-Sensitized Solar Cells Containing Phosphazene-Based Nonvolatile Electrolytes. Journal of Physical Chemistry C, 2010, 114, 15234-15242.	1.5	40
89	Polyphosphazene polymers for tissue engineering: an analysis of material synthesis, characterization and applications. Soft Matter, 2010, 6, 3119.	1.2	123
90	Hydrophobic and Superhydrophobic Polyphosphazenes. Journal of Adhesion Science and Technology, 2009, 23, 435-445.	1.4	13

#	Article	IF	CITATIONS
91	The influence of side group modification in polyphosphazenes on hydrolysis and cell adhesion of blends with PLGA. Biomaterials, 2009, 30, 3035-3041.	5.7	53
92	Synthesis and selfâ€association behavior of poly[bis(2â€(2â€methoxyethoxy)ethoxy)phosphazene]â€ <i>b</i> à6poly(propyleneglycol) triblock copolymers. Journal of Polymer Science Part A, 2009, 47, 692-699.	2.5	7
93	Polyphosphazenes That Contain Dipeptide Side Groups: Synthesis, Characterization, and Sensitivity to Hydrolysis. Macromolecules, 2009, 42, 636-639.	2.2	38
94	Synthesis of Adamantyl Polyphosphazeneâ^Polystyrene Block Copolymers, and β-Cyclodextrin-Adamantyl Side Group Complexation. Macromolecules, 2009, 42, 4484-4490.	2.2	44
95	Cyclotriphosphazenes with sulfur-containing side groups: refractive index and optical dispersion. Dalton Transactions, 2009, , 2477.	1.6	38
96	Foam formation from fluorinated polyphosphazenes by liquid CO2 processing. Polymer Engineering and Science, 2008, 48, 683-686.	1.5	6
97	Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl) Tj ETQq $1\ 1\ 0$.784314 r 5.7	gBT /Overlo
98	Synthesis and Characterization of Polyphosphazene- <i>block</i> -polyester and Polyphosphazene- <i>block</i> -polycarbonate Macromolecules. Macromolecules, 2008, 41, 1126-1130.	2.2	32
99	Recent Progress with Ethyleneoxy Phosphazenes as Lithium Battery Electrolytes. Materials Research Society Symposia Proceedings, 2008, 1127, 1.	0.1	6
100	cis -Diammineplatinum α-Pyridone Blue. Inorganic Syntheses, 2007, , 94-97.	0.3	0
101	Tris(Bidentate)Ruthenium(II) Bis[Hexafluorophosphate] Complexes. Inorganic Syntheses, 2007, , 107-110.	0.3	5
102	Pentachloro(Vinyloxy) Cyclotriphosphazenes and their Polymers: [2,2,4,4,6-Pentachloro-6-(Ethenyloxy)-1,3,5,2λ5,4λ5,6λ5-Triazatriphosphorine]. Inorganic Syntheses, 2007, , 74-78.	0.3	11
103	Cyclopentadienylbis (Trimethylphosphine) and Cyclopentadienylbis (Trimethylphosphite) Complexes of Co and Rh. Inorganic Syntheses, 2007, , 158-164.	0.3	2
104	Potassium Trialkyl- and Triarylstannates: Preparation by the Deprotonation of Stannanes with Potassium Hydride. Inorganic Syntheses, 2007, , 110-114.	0.3	4
105	Bis (Phosphine) Derivatives of Iron Pentacarbonyl and Tetracarbonyl (Tri-tert -Butylphosphine) Iron (0). Inorganic Syntheses, 2007, , 151-156.	0.3	5
106	Organocyclophosphanes. Inorganic Syntheses, 2007, , 1-5.	0.3	5
107	Silicon and Tin Sulfur-Nitrogen Compounds, (Me3Si)2N2S, (Me3Sn)2N2S, and (Me2Sn)S2N2. Inorganic Syntheses, 2007, , 43-47.	0.3	13
108	([18]Crown-6)Potassium Dicyanophosphide(1-). Inorganic Syntheses, 2007, , 126-129.	0.3	8

#	Article	IF	CITATIONS
109	Binary Cyclic Nitrogen-Sulfur Anions. Inorganic Syntheses, 2007, , 30-35.	0.3	3
110	1,1,1-Trimethyl-N -Sulfinylsilanamine, Me3 Sinso. Inorganic Syntheses, 2007, , 48-49.	0.3	5
111	Di-μ-lodo-Bis(Tricarbonylosmium), Bis(Tetracarbonyliodoosmium), and Dicarbonyliodo(Î-5) Tj ETQq1 1 0.784314	rgBT /Ove	rlgck 10 Tf
112	1,4,7,10,13,16-Hexathiacyclooctadecane (Hexathia-18-Crown-6) and Related Crown Thioethers. Inorganic Syntheses, 2007, , 122-126.	0.3	6
113	Tervalent Phosphorus-Nitrogen Ring Compounds. Inorganic Syntheses, 2007, , 7-12.	0.3	4
114	Poly (Dimethylphosphazene) and Poly (Methylphenylphosphazene): {Poly[nitrilo (dimethylphosphoranylidyne)]}. Inorganic Syntheses, 2007, , 69-74.	0.3	21
115	Methylenebis[Dichlorophosphine], Chlorobis[(Dichlorophosphino)Methyl]-Phosphine, and Methylenebis[Dimethyl Phosphine]. Inorganic Syntheses, 2007, , 120-122.	0.3	12
116	Resolution of the Tris(Oxalato)Chromate(III) Ion by a Second-Order Asymmetric Synthesis. Inorganic Syntheses, 2007, , 139-144.	0.3	0
117	Chlorofunctional 1,3,5,2λ5 ,4λ5 -Triazadiphosphinines. Inorganic Syntheses, 2007, , 24-30.	0.3	3
118	Organosilicon Derivatives of Cyclic and High Polymeric Phosphazenes. Inorganic Syntheses, 2007, , 60-68.	0.3	3
119	Boron Analogs of Amino Acids. Inorganic Syntheses, 2007, , 79-85.	0.3	10
120	Plasma Surface Functionalization of Poly[bis(2,2,2-trifluoroethoxy)phosphazene] Films and Nanofibers. Langmuir, 2007, 23, 8103-8107.	1.6	34
121	Dipotassium Tetraiodoplatinate(II) Dihydrate. Inorganic Syntheses, 2007, , 98-100.	0.3	O
122	The Ammonium Chloride Route to Anhydrous Rare Earth Chlorides-The Example of Ycl3. Inorganic Syntheses, 2007, , 146-150.	0.3	139
123	Synthesis and Characterization of Lithium-lon Conductive Membranes with Low Water Permeation. Chemistry of Materials, 2007, 19, 2473-2482.	3.2	16
124	Tris(Glycinato)Cobalt(III). Inorganic Syntheses, 2007, , 135-139.	0.3	2
125	Influence of Terminal Phenyl Groups on the Side Chains of Phosphazene Polymers:Â Structureâ^'Property Relationships and Polymer Electrolyte Behavior. Macromolecules, 2007, 40, 322-328.	2.2	36
126	Counterion Effects on Ion Mobility and Mobile Ion Concentration of Doped Polyphosphazene and Polyphosphazene Ionomers. Macromolecules, 2007, 40, 3990-3995.	2.2	74

#	Article	IF	Citations
127	Novel Highly Fluorinated Perfluorocyclobutane-Based Phosphazene Polymers for Photonic Applications. Chemistry of Materials, 2007, 19, 6338-6344.	3.2	42
128	(î-5-Cyclopentadienyl)Diruthenium Complexes. Inorganic Syntheses, 2007, , 179-187.	0.3	15
129	2,4,6-Trichloro-1,3,5-Triethylcyclophosph(III)Azanes (1,3,5,2,4,6-Triazatriphosphorinanes). Inorganic Syntheses, 2007, , 13-15.	0.3	2
130	Difluorodioxouranium(VI). Inorganic Syntheses, 2007, , 144-146.	0.3	4
131	Diethylammonium Cyclo - Octathiotetraphosphate(III). Inorganic Syntheses, 2007, , 5-7.	0.3	2
132			

#	Article	IF	CITATIONS
145	BisTert -Butylphosphido (T -Bup(H)-) Bridged Dimers of Rhodium(+1) and Nickel(+1) Containing Rh=Rh Double and Ni-Ni Single Bonds. Inorganic Syntheses, 2007, , 173-177.	0.3	3
146	μ-Nitrido-Bis(Triphenylphosphorus)(1 +)-μ-Carbonyl-Decacarbonyl-μ-Hydridotriosmate(1 -). Inorganic Syntheses, 2007, , 193-194.	0.3	0
147	(N3 P2 S)Clph4 , 1-Chloro-3,3,5,5-Tetraphenyl-1λ4 ,2,4,6,3λ5 ,5λ5 -thiatriazadiphosphorine. Inorganic Syntheses, 2007, , 40-43.	0.3	O
148	Alkyl or Aryl Bis(Tertiary Phosphine) Hydroxo Complexes of Platinum(II). Inorganic Syntheses, 2007, , 100-106.	0.3	2
149	Sodium Salt of (1R)-3-Nitrobornan-2-One (Sodium d-α-Camphornitronate). Inorganic Syntheses, 2007, , 133-135.	0.3	1
150	Binary Catena-Nitrogen-Sulfur Anions. Inorganic Syntheses, 2007, , 35-38.	0.3	0
151	Pentanitrogen Tetrasulfide Chloride, [N5S4]Cl [1λ4,3λ4,7-Tetrathia-2,4,6,8,9-Pentaazabicyclo[3.3.1]Nona-1(8),2,3,5-Tetraenylium Chloride]. Inorganic Syntheses, 2007, , 38-40.	0.3	0
152	(2-Diphenylphosphino)Benzenamine. Inorganic Syntheses, 2007, , 129-133.	0.3	51
153	A Perspective of Polyphosphazene Research. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 16, 277-294.	1.9	61
154	Appendix: Harry R. Allcock Bibliography. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 16, 437-459.	1.9	0
155	The Biocompatibility of Biodegradable Glycine Containing Polyphosphazenes: A Comparative study in Bone. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 16, 387-396.	1.9	29
156	New Approaches to Hybrid Polymers that Contain Phosphazene Rings. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 349-359.	1.9	37
157	Lithium-Ion Conductive Polymers as Prospective Membranes for Lithiumâ [^] 'Seawater Batteries. Chemistry of Materials, 2006, 18, 4486-4492.	3.2	34
158	A redox responsive polymeric gel based on ionic crosslinking. Soft Matter, 2006, 2, 397.	1.2	36
159	A New Polymeric Intermediate for the Synthesis of Hybrid Inorganicâ^'Organic Polymers. Macromolecules, 2006, 39, 4935-4937.	2.2	18
160	Effect of Side Group Chemistry on the Properties of Biodegradablel-Alanine Cosubstituted Polyphosphazenes. Biomacromolecules, 2006, 7, 914-918.	2.6	149
161	Recent developments in polyphosphazene materials science. Current Opinion in Solid State and Materials Science, 2006, 10, 231-240.	5.6	115
162	Design and synthesis of ion-conductive polyphosphazenes for fuel cell applications: Review. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2358-2368.	2.4	97

#	Article	IF	CITATIONS
163	Hydrophobic and superhydrophobic surfaces from polyphosphazenes. Polymer International, 2006, 55, 621-625.	1.6	74
164	Control of the conjugation length and solubility in electroluminescent polymers. Journal of Polymer Science Part A, 2006, 44, 69-76.	2.5	24
165	Hybrid Metallocene?Phosphazene Polymers. Journal of Inorganic and Organometallic Polymers, 2005, 15, 57-65.	1.5	16
166	Environmentally responsive micelles from polystyrene-poly[bis(potassium) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 2912-2920.	627 Td (ca 2.5	arboxylatoph 38
167	Poly[bis(2,2,2-trifluoroethoxy)phosphazene] Superhydrophobic Nanofibers. Langmuir, 2005, 21, 11604-11607.	1.6	186
168	Synthesis and Characterization of Covalently Interconnected Phosphazeneâ-'Silicate Hybrid Network Membranes. Chemistry of Materials, 2005, 17, 4449-4454.	3.2	10
169	Biodegradable Poly[bis(ethyl alanato)phosphazene] - Poly(lactide-co-glycolide) Blends: Miscibility and Osteocompatibility Evaluations. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	5
170	Development of Novel Biodegradable Amino Acid Ester Based Polyphosphazene– Hydroxyapatite Composites for Bone Tissue Engineering. Materials Research Society Symposia Proceedings, 2004, 845, 151.	0.1	3
171	Design and Syntheses of Poly(Norbornenyldecaborane) Precursors to Boron Carbide and Boron-Carbide/Silicon-Carbide Ceramics. Materials Research Society Symposia Proceedings, 2004, 848, 114.	0.1	0
172	Electrostatic Spinning, Pyrolysis, and Characterization of Boron Carbide Nanofibers Prepared from Poly(norbornenyldecaborane) - a Polymeric Ceramic Precursor. Materials Research Society Symposia Proceedings, 2004, 848, 294.	0.1	0
173	Dependency of thermal and mechanical properties on the composition of mixed-substituent poly(fluoroalkoxyphosphazenes). Journal of Applied Polymer Science, 2004, 92, 2569-2576.	1.3	12
174	Ionic Transport in Polymer Electrolytes:  The Essential Role of Associated Ionic Species. Macromolecules, 2004, 37, 8699-8702.	2,2	34
175	Poly(methyl methacrylate)-graft-poly- [bis(trifluoroethoxy)phosphazene] Copolymers:Â Synthesis, Characterization, and Effects of Polyphosphazene Incorporation. Macromolecules, 2004, 37, 5824-5829.	2.2	31
176	Synthesis and Micellar Behavior of Amphiphilic Polystyrenea^Poly[bis(methoxyethoxyethoxy)phosphazene] Block Copolymers. Macromolecules, 2004, 37, 7163-7167.	2.2	63
177	Telechelic Polyphosphazenes:Â Reaction of Living Poly(dichlorophosphazene) Chains with Alkoxy and Aryloxy Phosphoranimines. Macromolecules, 2004, 37, 3635-3641.	2.2	27
178	High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells. Electrochimica Acta, 2003, 48, 2173-2180.	2.6	113
179	Side Group Exchange in Poly(organophosphazenes) with Fluoroalkoxy Substituents. Macromolecules, 2003, 36, 5566-5572.	2.2	26
180	Synthesis and Characterization of Novel Solid Polymer Electrolytes Based on Poly(7-oxanorbornenes) with Pendent Oligoethyleneoxy-Functionalized Cyclotriphosphazenes. Macromolecules, 2003, 36, 3563-3569.	2.2	26

#	Article	IF	CITATIONS
181	Tyrosine-Bearing Polyphosphazenes. Biomacromolecules, 2003, 4, 1646-1653.	2.6	43
182	Incorporation of Cyclic Phosphazene Trimers into Saturated and Unsaturated Ethylene-like Polymer Backbones. Macromolecules, 2002, 35, 40-47.	2.2	33
183	Phenylphosphonic Acid Functionalized Poly[aryloxyphosphazenes]. Macromolecules, 2002, 35, 3484-3489.	2.2	96
184	Synthesis and Characterization of pH-Responsive Poly(organophosphazene) Hydrogels. ACS Symposium Series, 2002, , 82-101.	0.5	8
185	Charge cycling and impedance characterization of a polyphosphazene solid polymer electrolyte–manganese(IV) oxide intercalation cathode. Electrochimica Acta, 2002, 47, 3863-3872.	2.6	9
186	Properties of Poly(phosphazeneâ^'siloxane) Block Copolymers Synthesized via Telechelic Polyphosphazenes and Polysiloxane Phosphoranimines. Macromolecules, 2001, 34, 6858-6865.	2.2	65
187	Separation of Polymers and Small Molecules by Crystalline Host Systems. Macromolecules, 2001, 34, 3069-3076.	2.2	21
188	Polynorbornenes Bearing Pendent Cyclotriphosphazenes with Oligoethyleneoxy Side Groups:Â Behavior as Solid Polymer Electrolytes. Macromolecules, 2001, 34, 787-794.	2.2	48
189	Poly(phosphazeneâ^ethylene oxide) Di- and Triblock Copolymers as Solid Polymer Electrolytes. Macromolecules, 2001, 34, 5463-5470.	2.2	72
190	Synthesis of Cyclolinear Phosphazene-Containing Polymers via ADMET Polymerization. Macromolecules, 2001, 34, 5140-5146.	2.2	50
191	Organic Polymers with Cyclophosphazene Side Groups:  Influence of the Phosphazene on Physical Properties and Thermolysis. Macromolecules, 2001, 34, 3896-3904.	2.2	58
192	Synthesis and metal coordination of thioether containing cyclo- and poly(organophosphazenes). Journal of Applied Polymer Science, 2000, 78, 650-661.	1.3	15
193	Phosphorylation of phosphazenes and its effects on thermal properties and fire retardant behavior. Polymer Engineering and Science, 2000, 40, 1177-1189.	1.5	52
194	Polyurethane/poly[bis(carboxylatophenoxy)phosphazene] blends and their potential as flame-retardant materials. Polymer Engineering and Science, 2000, 40, 465-472.	1.5	49
195	Polyphosphazeneâ^Polystyrene Copolymers:Â Block and Graft Copolymers from Polyphosphazene and Polystyrene Macromonomers. Macromolecules, 2000, 33, 5763-5765.	2.2	56
196	Phosphinimine Modification of Organic Polymers. Macromolecules, 2000, 33, 4307-4309.	2.2	20
197	Synthesis and Characterization of Phosphazene Di- and Triblock Copolymers via the Controlled Cationic, Ambient Temperature Polymerization of Phosphoranimines. Macromolecules, 2000, 33, 3999-4007.	2.2	45
198	Synthesis of Telechelic Polyphosphazenes via the Ambient Temperature Living Cationic Polymerization of Amino Phosphoranimines. Macromolecules, 1999, 32, 5736-5743.	2.2	41

#	Article	IF	Citations
199	Azidophosphazenes as Functionalized Intermediates. Inorganic Chemistry, 1999, 38, 5535-5544.	1.9	20
200	lonic Conduction in Polyphosphazene Solids and Gels:Â13C,31P, and15N NMR Spectroscopy and Molecular Dynamics Simulations. Macromolecules, 1999, 32, 732-741.	2.2	54
201	Telechelic Syntheses of the First Phosphazene Siloxane Block Copolymers. Macromolecules, 1999, 32, 6390-6392.	2.2	60
202	Ring-Opening Metathesis Polymerization of Phosphazene-Functionalized Norbornenes. Macromolecules, 1999, 32, 7719-7725.	2.2	38
203	Synthesis of Trifluoromethyl- and Methylphosphazene Polymers:  Differences between Polymerization and Initiator/Terminator Properties. Macromolecules, 1999, 32, 7999-8004.	2.2	10
204	The synthesis of functional polyphosphazenes and their surfaces. Applied Organometallic Chemistry, 1998, 12, 659-666.	1.7	51
205	Synthesis of the First Organic Polymer/Polyphosphazene Block Copolymers:Â Ambient Temperature Synthesis of Triblock Poly(Phosphazeneâ~ethylene oxide) Copolymers. Macromolecules, 1998, 31, 947-949.	2.2	70
206	In Vitro Release of Colchicine Using Poly(phosphazenes): The Development of Delivery Systems for Musculoskeletal Use. Pharmaceutical Development and Technology, 1998, 3, 55-62.	1.1	28
207	Functionalized Polyphosphazenes:Â Polymers with Pendent Tertiary Trialkylamino Groups. Macromolecules, 1998, 31, 5255-5263.	2.2	30
208	Synthesis and Characterization of Hindered Polyphosphazenes via Functionalized Intermediates: Exploratory Models for Electro-optical Materials. Macromolecules, 1998, 31, 5206-5214.	2.2	41
209	Functional Polyphosphazenes. ACS Symposium Series, 1998, , 261-275.	0.5	4
210	Cation Complexation and Conductivity in Crown Ether Bearing Polyphosphazenes. Macromolecules, 1998, 31, 753-759.	2.2	53
211	Polyphosphazenes Functionalized with Sulfone or Sulfoxide Groups:Â Synthesis, Characterization, and Possible Polymer Electrolyte Applications. Macromolecules, 1998, 31, 8036-8046.	2.2	35
212	Polyphosphazenes with Adamantyl Side Groups. Macromolecules, 1997, 30, 5683-5687.	2.2	34
213	Langmuirâ^Adam Trough Studies of Hydrophobicity, Hydrophilicity, and Amphilicity in Small-Molecule and High-Polymeric Phosphazenes. Langmuir, 1997, 13, 2123-2132.	1.6	12
214	Synthesis of CdS Nanoparticles in Solution and in a Polyphosphazene Matrix. Chemistry of Materials, 1997, 9, 1367-1376.	3.2	74
215	Effect of Oligo(ethyleneoxy)cyclotriphosphazenes, Tetraglyme, and Other Small Molecules on the lonic Conductivity of the Poly[bis(methoxyethoxyethoxy)phosphazene] (MEEP)/Lithium Triflate System. Macromolecules, 1997, 30, 3184-3190.	2.2	69
216	Polyphosphazenes with High Refractive Indices:  Optical Dispersion and Molar Refractivity. Macromolecules, 1997, 30, 4179-4183.	2.2	62

#	Article	IF	Citations
217	Cationic Homo- and Copolymerization of Fluorophosphoranimines as an Ambient Temperature Synthetic Route to Poly(fluorophosphazenes), [NPF(R)]n, with Controlled Architectures. Macromolecules, 1997, 30, 3191-3196.	2.2	31
218	Ambient-Temperature Direct Synthesis of Poly(organophosphazenes) via the "Living―Cationic Polymerization of Organo-Substituted Phosphoranimines. Macromolecules, 1997, 30, 50-56.	2.2	120
219	Polyphosphazene Block Copolymers via the Controlled Cationic, Ambient Temperature Polymerization of Phosphoranimines. Macromolecules, 1997, 30, 2213-2215.	2.2	124
220	Synthesis of Triarmed-Star Polyphosphazenes via the "Living―Cationic Polymerization of Phosphoranimines at Ambient Temperaturesâ€. Macromolecules, 1997, 30, 1854-1856.	2.2	60
221	Inclusion Adduct Formation between Tris(o-phenylenedioxy)cyclotriphosphazene and Poly(ethylene) Tj ETQq1	1 0.784314 2.2	rgBJ /Overlo
222	Novel polyphosphazene/poly(lactide-co-glycolide) blends: miscibility and degradation studies. Biomaterials, 1997, 18, 1565-1569.	5.7	80
223	Design and Synthesis of New Biomaterials via Macromolecular Substitution ^a . Annals of the New York Academy of Sciences, 1997, 831, 13-31.	1.8	4
224	Synthesis and Characterization of Ionically Conducting Alkoxy Ether/Alkoxy Mixed-Substituent Poly(organophosphazenes) and Their Use as Solid Solvents for Ionic Conduction. Macromolecules, 1996, 29, 1951-1956.	2.2	77
225	New Polyphosphazenes with Unsaturated Side Groups:Â Use as Reaction Intermediates, Cross-Linkable Polymers, and Components of Interpenetrating Polymer Networks. Macromolecules, 1996, 29, 2721-2728.	2.2	22
226	Synthesis and Characterization of Aminoorganosiloxane-Bearing Polyphosphazenes:Â New Properties by the Elimination of Hydrogen Bonding. Macromolecules, 1996, 29, 3686-3693.	2,2	12
227	Synthesis and Structure of Adamantane-Containing Phosphazenes. Inorganic Chemistry, 1996, 35, 6337-6338.	1.9	26
228	Polyphosphazenes Bearing Branched and Linear Oligoethyleneoxy Side Groups as Solid Solvents for lonic Conduction. Macromolecules, 1996, 29, 7544-7552.	2.2	116
229	Controlled Formation of Carboxylic Acid Groups at Polyphosphazene Surfaces:  Oxidative and Hydrolytic Routes. Chemistry of Materials, 1996, 8, 2730-2738.	3.2	23
230	Synthesis of Polyphosphazenes with Ethyleneoxy-Containing Side Groups:Â New Solid Electrolyte Materials. Macromolecules, 1996, 29, 3384-3389.	2.2	85
231	Lower Critical Solubility Temperature Study of Alkyl Ether Based Polyphosphazenes. Macromolecules, 1996, 29, 1313-1319.	2.2	76
232	"Living―Cationic Polymerization of Phosphoranimines as an Ambient Temperature Route to Polyphosphazenes with Controlled Molecular Weights. Macromolecules, 1996, 29, 7740-7747.	2.2	194
233	Water-Soluble Polyphosphazenes and Their Hydrogels. Advances in Chemistry Series, 1996, , 3-29.	0.6	8
234	A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. , 1996, 30, 133-138.		181

#	Article	IF	CITATIONS
235	The synthesis and structure of triphenylsiloxycyclotriphosphazenes. Heteroatom Chemistry, 1996, 7, 67-95.	0.4	12
236	Hybrid phosphazene-organosilicon polymers: II. High-polymer and materials synthesis and properties. Journal of Inorganic and Organometallic Polymers, 1996, 6, 1-41.	1.5	16
237	Surface Studies of Poly(organophosphazenes) Containing Dimethylsiloxane Grafts. Chemistry of Materials, 1995, 7, 1469-1474.	3.2	22
238	Synthesis of Liquid Crystalline Phosphazenes Containing Chiral Mesogens. Macromolecules, 1995, 28, 4351-4360.	2.2	44
239	Ambient Temperature Synthesis of Poly(dichlorophosphazene) with Molecular Weight Control. Journal of the American Chemical Society, 1995, 117, 7035-7036.	6.6	243
240	Hydrolytic degradation of ionically cross-linked polyphosphazene microspheres. Journal of Applied Polymer Science, 1994, 53, 1573-1578.	1.3	43
241	Poly[(amino acid ester)phosphazenes] as substrates for the controlled release of small molecules. Biomaterials, 1994, 15, 563-569.	5.7	104
242	Macromolecular and Materials Design Using Polyphosphazenes. ACS Symposium Series, 1994, , 208-231.	0.5	14
243	Photoinitiated Graft Poly(organophosphazenes): Functionalized Immobilization Substrates for the Binding of Amines, Proteins, and Metals. Chemistry of Materials, 1994, 6, 516-524.	3.2	27
244	Poly[(amino acid ester)phosphazenes]: Synthesis, Crystallinity, and Hydrolytic Sensitivity in Solution and the Solid State. Macromolecules, 1994, 27, 1071-1075.	2.2	175
245	Poly(organophosphazenes) Containing Allyl Side Groups: Crosslinking and Modification by Hydrosilylation. Macromolecules, 1994, 27, 5206-5215.	2.2	24
246	Use of polyphosphazenes for skeletal tissue regeneration. Journal of Biomedical Materials Research Part B, 1993, 27, 963-973.	3.0	167
247	Synthesis and characterization of metallophosphazene derivatives: solution state and surface reactions. Chemistry of Materials, 1993, 5, 1307-1314.	3.2	14
248	Poly(thiophosphazenes): new inorganic backbone polymers. Macromolecules, 1993, 26, 11-16.	2.2	43
249	Synthesis and properties of high polymeric phosphazenes with (trimethylsilyl)methyl side groups. Macromolecules, 1993, 26, 764-771.	2.2	18
250	Reactivity and polymerization behavior of a pentachlorocyclocarbophosphazene, N3P2CCl5. Inorganic Chemistry, 1993, 32, 5088-5094.	1.9	32
251	Polyphosphazenes bearing polymerizable pyrrole, thiophene, and furan side groups: synthesis and chemical oxidation. Chemistry of Materials, 1992, 4, 780-788.	3.2	20
252	Mechanisms and Catalysis in Cyclophosphazene Polymerization. ACS Symposium Series, 1992, , 236-247.	0.5	8

#	Article	IF	Citations
253	Polyphosphazenes. Journal of Inorganic and Organometallic Polymers, 1992, 2, 197-211.	1.5	58
254	Synthesis of strained ferrocenylorganocyclophosphazenes: x-ray crystal structures of N3P3(OCH2CF3)4(.etaC5H4)2Fe, N3P3(OPh)4(.etaC5H4)2Fe, and N3P3Ph2(OCH2CF3)2(.etaC5H4)2Fe. Organometallics, 1991, 10, 3098-3104.	1.1	27
255	Second-order nonlinear optical poly(organophosphazenes): synthesis and nonlinear optical characterization. Macromolecules, 1991, 24, 1000-1010.	2.2	75
256	Organosilicon derivatives of phosphazenes. 11. Synthesis and reactivity of cyclotriphosphazenes bearing reactive silane functionalities: novel derivatives via hydrosilylation reactions. Organometallics, 1991, 10, 3819-3825.	1.1	17
257	Syntheses and structures of cyclic and short-chain linear phosphazenes bearing 4-phenylphenoxy side groups. Journal of the American Chemical Society, 1991, 113, 2628-2634.	6.6	50
258	Strain-induced ring-opening polymerization of ferrocenylorganocyclotriphosphazenes: a new synthetic route to poly(organophosphazenes). Journal of the American Chemical Society, 1991, 113, 9596-9603.	6.6	50
259	Surface reaction of poly[bis(trifluoroethoxy)phosphazene] films by basic hydrolysis. Chemistry of Materials, 1991, 3, 442-449.	3.2	25
260	Synthesis and structure of phosphazene (.eta.6-arene) chromium tricarbonyl derivatives. Organometallics, 1991, 10, 1865-1874.	1.1	16
261	Sulfonation of (aryloxy)- and (arylamino)phosphazenes: small-molecule compounds, polymers, and surfaces. Chemistry of Materials, 1991, 3, 1120-1132.	3.2	90
262	Second-Order Nonlinear Optical Polyphosphazenes. ACS Symposium Series, 1991, , 258-266.	0.5	2
263	A Novel Synthetic Method for Hybridoma Cell Encapsulation. Nature Biotechnology, 1991, 9, 468-471.	9.4	32
264	Poly(thiophosphazenes): new inorganic macromolecules with backbones composed of phosphorus, nitrogen, and sulfur atoms. Journal of the American Chemical Society, 1990, 112, 1268-1269.	6.6	92
265	A second-order nonlinear optical poly(organophosphazene). Chemistry of Materials, 1990, 2, 97-99.	3.2	33
266	Organosiloxyphosphazene polymers: synthesis via aminosiloxane reagents. Macromolecules, 1990, 23, 1626-1635.	2.2	26
267	Ring expansion and equilibration in organophosphazenes and the relationship to polymerization. Inorganic Chemistry, 1990, 29, 3839-3844.	1.9	12
268	Synthesis of new polyphosphazene elastomers. Macromolecules, 1990, 23, 3873-3877.	2.2	21
269	Ionically crosslinkable polyphosphazene: a novel polymer for microencapsulation. Journal of the American Chemical Society, 1990, 112, 7832-7833.	6.6	142
270	Organometallic and Bioactive Cyclophosphazenes, and the Relationship to Inorganic Macromolecules. Phosphorus, Sulfur and Silicon and the Related Elements, 1989, 41, 119-133.	0.8	6

#	Article	IF	CITATIONS
271	Poly[(aryloxy)phosphazenes] with phenylphenoxy and related bulky side groups: synthesis, thermal transition behavior, and optical properties. Macromolecules, 1989, 22, 4179-4190.	2.2	66
272	An ionically crosslinkable polyphosphazene: poly[bis(carboxylatophenoxy)phosphazene] and its hydrogels and membranes. Macromolecules, 1989, 22, 75-79.	2.2	148
273	Ring-opening polymerization of methylsilane- and methylsiloxane-substituted cyclotriphosphazenes. Macromolecules, 1988, 21, 1-10.	2.2	29
274	Electronic properties and redox conduction of ferrocene-substituted high polymeric phosphazenes. Journal of the American Chemical Society, 1988, 110, 7254-7255.	6.6	46
275	Effects of organic side group structures on the properties of poly(organophosphazenes). Macromolecules, 1988, 21, 323-334.	2.2	102
276	Glyceryl polyphosphazenes: synthesis, properties, and hydrolysis. Macromolecules, 1988, 21, 1980-1985.	2.2	54
277	Current Status of Polyphosphazene Chemistry. ACS Symposium Series, 1988, , 250-267.	0.5	36
278	Polymerization of new metallocenylphosphazenes. Macromolecules, 1987, 20, 6-10.	2.2	36
279	Synthesis of polyphosphazenes bearing covalently linked copper phthalocyanine units. Macromolecules, 1986, 19, 1495-1501.	2.2	53
280	Cobalt hydroformylation catalyst supported on a phosphinated polyphosphazene. Identification of phosphorus-carbon bond cleavage as mode of catalyst deactivation. Organometallics, 1986, 5, 460-466.	1.1	46
281	A bis(benzene)chromium-bridged cyclophosphazene: x-ray structure analysis of N3P3F4(.etaC6H5)2Cr. Organometallics, 1986, 5, 2153-2154.	1.1	10
282	Metallocenylphosphazene ring systems and high polymers. Reactions of ferrocenyl- and ruthenocenylphosphazenes with lithiometallocenes and the x-ray structures of N3P3F4(.etaC5H4)2Fe, [N3P3F3{(.etaC5H4)2Fe}{(.etaC5H4)Fe(.etaC5H5)}], 1,5-N4P4F6(.etaC5H4)2Fe, and 1,5,3,7-N4P4F4[(.etaC5H4)2Ru]2. Organometallics, 1986, 5, 1626-1635.	1.1	30
283	Poly(organophosphazenes): Synthesis, unique properties, and applications. Makromolekulare Chemie Macromolecular Symposia, 1986, 6, 101-108.	0.6	18
284	Electron impact mass spectra of a series of 1-alkyl-1-hydridotetrachlorocyclotriphosphazenes1. Organic Mass Spectrometry, 1985, 20, 321-322.	1.3	2
285	Ring-opening polymerization of metallocene cyclophosphazene derivatives. Macromolecules, 1985, 18, 1340-1345.	2.2	56
286	Metal exchange reactions under the influence of a cyclophosphazene template: iron, cobalt, and rhodium metallophosphazenes. Organometallics, 1985, 4, 446-457.	1.1	19
287	Dicobalt-hexacarbonyl complexes of acetylenic phosphazenes. Organometallics, 1984, 3, 432-440.	1.1	28
288	Cobalt-mediated phosphorus-aryl bond cleavage during hydroformylation. Organometallics, 1984, 3, 649-650.	1.1	41

#	Article	IF	CITATIONS
289	Iron-containing metallophosphazenes and their clusters derived from chlorophosphazenes and organometallic dianions. Journal of the American Chemical Society, 1984, 106, 4966-4977.	6.6	22
290	Synthesis and structure of metallocene cyclophosphazene derivatives. Journal of the American Chemical Society, 1984, 106, 2337-2347.	6.6	69
291	Chromium, molybdenum, and tungsten chlorophosphazenes: molecular structures of N3P3Cl5[Cr(CO)3(.etaC5H5)] and N3P3Cl4(C5H5)[Mo(CO)3(.etaC5H5)]. Journal of the American Chemical Society, 1984, 106, 5561-5567.	6.6	27
292	The electron impact and chemical ionization mass spectra of a series of 1-alkyl-1-bromotetrachlorocyclotriphosphazines. Organic Mass Spectrometry, 1983, 18, 178-181.	1.3	2
293	The El and Cl mass spectra of a series of 1-alkyl-1-iodo-tetrachlorocydotriphosphazenes. Organic Mass Spectrometry, 1983, 18, 268-271.	1.3	3
294	Iron-bound cyclotriphosphazenes derived from phosphazene anions. X-Ray crystal structure of N3P3Cl4(CH3)[Fe(CO)2(C5H5)]. Journal of the Chemical Society Chemical Communications, 1983, , 822.	2.0	9
295	Synthesis of sugar-substituted cyclic and polymeric phosphazenes and their oxidation, reduction, and acetylation reactions. Macromolecules, 1983, 16, 715-719.	2.2	70
296	Phosphorus-nitrogen ring systems and high polymers. Iron- and ruthenium-linked phosphazenes. Journal of the American Chemical Society, 1983, 105, 1321-1327.	6.6	40
297	A new approach to polymer chemistry: Organometallic and bioactive phosphazenes. Journal of Polymer Science, Polymer Symposia, 1983, 70, 71-77.	0.1	16
298	Synthesis of a di-iron-spirocyclotriphosphazene and a tri-iron-cluster-cyclotriphosphazene. Journal of the Chemical Society Chemical Communications, 1982, , 649.	2.0	11
299	Ferrocene-bound cyclophosphazenes. X-Ray crystal structure of N3P3F5(C5H4FeC5H5). Journal of the Chemical Society Chemical Communications, 1982, , 960.	2.0	14
300	The mass spectra of a series of monalkylpentachlotriphosphazenes. Organic Mass Spectrometry, 1982, 17, 351-352.	1.3	6
301	Synthesis and molecular structure of two cyclotriphosphazenes with phosphorus-iron bonds. Inorganic Chemistry, 1981, 20, 716-722.	1.9	24
302	Controlled synthesis of organic-inorganic polymers that possess a backbone of phosphorus and nitrogen atoms. Die Makromolekulare Chemie, 1981, 4, 3-19.	1.1	12
303	A spirocyclophosphazene with iron-phosphorus bonds and a phosphorus-iron-iron three-membered ring. Journal of the American Chemical Society, 1979, 101, 2492-2493.	6.6	20
304	Small-molecule phosphazene rings as models for high polymeric chains. Accounts of Chemical Research, 1979, 12, 351-358.	7.6	99
305	Phosphorus-nitrogen compounds. 30. Synthesis of platinum derivatives of polymeric and cyclic phosphazenes. Journal of the American Chemical Society, 1977, 99, 3984-3987.	6.6	80
306	Phosphorus-nitrogen compounds. 31. Crystal and molecular structure of a platinum-cyclophosphazene complex: cis-dichloro[octa(methylamino)cyclotetraphosphazene-N,N'']platinum(II). Journal of the American Chemical Society, 1977, 99, 3987-3991.	6.6	46

#	Article	IF	CITATIONS
307	Poly(organophosphazenes)—Unusual New High Polymers. Angewandte Chemie International Edition in English, 1977, 16, 147-156.	4.4	116
308	Expanding Options in Polyphosphazene Biomedical Research., 0, , 15-43.		5
309	Biodegradable Polyphosphazene Scaffolds for Tissue Engineering. , 0, , 117-138.		6
310	Chapter 3. Structural Diversity in Fluorinated Polyphosphazenes: Exploring the Change from Crystalline Thermoplastics to High-performance Elastomers and Other New Materials., 0,, 54-79.		2