Min-Kyu Son

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6614183/publications.pdf

Version: 2024-02-01

394421 265206 2,151 46 19 42 citations g-index h-index papers 46 46 46 3578 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cu ₂ O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. Nano Letters, 2016, 16, 1848-1857.	9.1	542
2	Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nature Catalysis, 2018, 1, 412-420.	34.4	489
3	Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells. Advanced Materials, 2016, 28, 3966-3972.	21.0	152
4	A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes. Energy and Environmental Science, 2017, 10, 912-918.	30.8	90
5	Banyan Root Structured Mg-Doped ZnO Photoanode Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 2600-2607.	3.1	89
6	Solution-Processed Cu ₂ S Photocathodes for Photoelectrochemical Water Splitting. ACS Energy Letters, 2018, 3, 760-766.	17.4	89
7	Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells. Electrochimica Acta, 2014, 127, 427-432.	5.2	78
8	Cobalt sulfide thin film as an efficient counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2014, 133, 174-179.	5 . 2	73
9	Analysis of TiO2 thickness effect on characteristic of a dye-sensitized solar cell by using electrochemical impedance spectroscopy. Current Applied Physics, 2010, 10, S422-S424.	2.4	68
10	Faster dye-adsorption of dye-sensitized solar cells by applying an electric field. Electrochimica Acta, 2010, 55, 4120-4123.	5 . 2	39
11	Polymer counter electrode of poly(3,4-ethylenedioxythiophene):Poly(4-styrenesulfonate) containing TiO2 nano-particles for dye-sensitized solar cells. Journal of Power Sources, 2016, 307, 25-30.	7.8	32
12	Surface modification on TiO2 nanoparticles in CdS/CdSe Quantum Dot-sensitized Solar Cell. Electrochimica Acta, 2014, 118, 118-123.	5.2	28
13	Characterization of Cu ₂ O/CuO heterostructure photocathode by tailoring CuO thickness for photoelectrochemical water splitting. RSC Advances, 2022, 12, 2632-2640.	3.6	28
14	Optimal ablation of fluorine-doped tin oxide (FTO) thin film layers adopting a simple pulsed Nd:YAG laser with TEM00 mode. Optics and Lasers in Engineering, 2009, 47, 558-562.	3.8	27
15	Improved performance of CdS/CdSe quantum dot-sensitized solar cells using Mn-doped PbS quantum dots as a catalyst in the counter electrode. Electrochimica Acta, 2014, 117, 92-98.	5.2	26
16	Ammonia treated ZnO nanoflowers based CdS/CdSe quantum dot sensitized solar cell. Electrochimica Acta, 2015, 151, 531-536.	5.2	24
17	Characteristics of crystalline sputtered LaFeO ₃ thin films as photoelectrochemical water splitting photocathodes. Nanoscale, 2020, 12, 9653-9660.	5.6	23
18	Magnesium doped ZnO nanoparticles embedded ZnO nanorod hybrid electrodes for dye sensitized solar cells. Journal of Sol-Gel Science and Technology, 2012, 62, 453-459.	2.4	22

#	Article	IF	CITATIONS
19	Study on characteristics of CdS quantum dot-sensitized solar cells prepared by successive ionic layer adsorption and reaction with different adsorption times. Electronic Materials Letters, 2014, 10, 621-626.	2.2	20
20	The analysis of the change in the performance and impedance of dye-sensitized solar cell according to the dye-adsorption time. Current Applied Physics, 2010, 10, S418-S421.	2.4	19
21	Improved long-term durability of a parallel-type dye-sensitized solar cell module using a platinum metal grid fabricated by direct current magnetron sputtering with heat treatment. Journal of Power Sources, 2013, 222, 333-339.	7.8	19
22	The blocking effect of charge recombination by sputtered and acid-treated ZnO thin film in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 248, 50-54.	3.9	18
23	Structural and Compositional Investigations on the Stability of Cuprous Oxide Nanowire Photocathodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55080-55091.	8.0	18
24	Visible light enhanced TiO2 thin film bilayer dye sensitized solar cells. Thin Solid Films, 2010, 519, 894-899.	1.8	16
25	The photo-characteristics of (Bi1â^'xZnx)S quantum dot complex and multilayer structure for the application to the dye-sensitized solar cell. Current Applied Physics, 2011, 11, S154-S157.	2.4	13
26	Surface Modification of Polymer Counter Electrode for Low Cost Dye-sensitized Solar Cells. Electrochimica Acta, 2016, 210, 880-887.	5.2	12
27	Optimal series-parallel connection method of dye-sensitized solar cell for Pt thin film deposition using a radio frequency sputter system. Thin Solid Films, 2008, 517, 963-966.	1.8	10
28	Cu-doped ZnO nanoporous film for improved performance of CdS/CdSe quantum dot-sensitized solar cells. Thin Solid Films, 2014, 570, 310-314.	1.8	10
29	Design and Demonstration of Large Scale Cu2O Photocathodes with Metal Grid Structure for Photoelectrochemical Water Splitting. Energies, 2021, 14, 7422.	3.1	9
30	Study on the Fabrication of Paint-Type Si Quantum Dot-Sensitized Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 10MB07.	1.5	7
31	Electrochemical impedance analysis on the additional layers for the enhancement on the performance of dye-sensitized solar cell. Thin Solid Films, 2014, 554, 122-126.	1.8	7
32	The enhancement of dye adsorption in dye-sensitized solar module by an electrical adsorption method. Thin Solid Films, 2014, 554, 118-121.	1.8	7
33	Efficient electron transfer and reduced recombination with Nd:YAG laser scribing for high-efficiency quantum dot-sensitized solar cells. Optics and Laser Technology, 2017, 94, 290-295.	4.6	7
34	Graphene-Si3N4 nanocomposite blended polymer counter electrode for low-cost dye-sensitized solar cells. Chemical Physics Letters, 2020, 758, 137920.	2.6	7
35	Enhanced performance of Al2O3 coated ZnO nanorods in CdS/CdSe quantum dot-sensitized solar cell. Materials Chemistry and Physics, 2014, 143, 1404-1409.	4.0	6
36	Enhanced Photocurrent from CdS Sensitized ZnO Nanorods. Journal of Electrical Engineering and Technology, 2012, 7, 965-970.	2.0	6

#	Article	lF	CITATIONS
37	The effects of electrolyte additives on the cell performances of CdS/CdSe quantum dot sensitized solar cells. Korean Journal of Chemical Engineering, 2013, 30, 2088-2092.	2.7	5
38	Fabrication of mesoporous TiO2 double layer using dicarboxylic acid in dye-sensitized solar cell. Electronic Materials Letters, 2014, 10, 229-234.	2.2	5
39	Improvement on the Long-Term Stability of Dye-Sensitized Solar Module by Structural Alternation. Japanese Journal of Applied Physics, 2012, 51, 10NE21.	1.5	3
40	Improved performance of dye-sensitized solar cells by employing acid treated Ti layer on the nanocrystalline TiO2. Thin Solid Films, 2014, 554, 204-208.	1.8	2
41	A simple method for modeling dye-sensitized solar cells. Thin Solid Films, 2014, 554, 114-117.	1.8	2
42	Performance Characteristics of Bifacial Dye-Sensitized Solar Cells with a V-Shaped Low-Concentrating Light System. ACS Applied Energy Materials, 0, , .	5.1	2
43	Computational modeling and experimental analysis on the improvement of current mismatch in a W-type series-connected dye-sensitized solar module. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 268, 17-23.	3.9	1
44	Effect of Ultraviolet Radiation on the Long-Term Stability of Dye-Sensitized Solar Cells. Electronic Materials Letters, 2020, 16, 556-563.	2.2	1
45	Investigation on Characterization of Sputtered Lanthanum Iron Oxide Film for Durable Photoelectrochemical Water Splitting. , 0, , .		0
46	Investigation on Characterization of Sputtered Lanthanum Iron Oxide Film for Durable Photoelectrochemical Water Splitting. , 0, , .		0