Knut Biber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6613831/publications.pdf

Version: 2024-02-01

172457 315739 4,211 38 29 38 citations h-index g-index papers 38 38 38 6735 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neurodegeneration and neuroinflammation are linked, but independent of alphaâ€synuclein inclusions, in a seeding/spreading mouse model of Parkinson's disease. Glia, 2022, 70, 935-960.	4.9	30
2	Antidepressant treatment is associated with epigenetic alterations of Homer1 promoter in a mouse model of chronic depression. Journal of Affective Disorders, 2021, 279, 501-509.	4.1	14
3	Enhanced adenosine A1 receptor and Homer1a expression in hippocampus modulates the resilience to stress-induced depression-like behavior. Neuropharmacology, 2020, 162, 107834.	4.1	23
4	The neuroprotective role of microglial cells against amyloid betaâ€mediated toxicity in organotypic hippocampal slice cultures. Brain Pathology, 2020, 30, 589-602.	4.1	25
5	Replenishment of Organotypic Hippocampal Slice Cultures with Neonatal or Adult Microglia. Methods in Molecular Biology, 2019, 2034, 127-147.	0.9	2
6	Enhanced mGlu5 Signaling in Excitatory Neurons Promotes Rapid Antidepressant Effects via AMPA Receptor Activation. Neuron, 2019, 104, 338-352.e7.	8.1	55
7	The role of adenosine receptors in mood and anxiety disorders. Journal of Neurochemistry, 2019, 151, 11-27.	3.9	76
8	Recent insights into antidepressant therapy: Distinct pathways and potential common mechanisms in the treatment of depressive syndromes. Neuroscience and Biobehavioral Reviews, 2018, 88, 63-72.	6.1	25
9	Antidepressants Rescue Stress-Induced Disruption of Synaptic Plasticity via Serotonin Transporter–Independent Inhibition of L-Type Calcium Channels. Biological Psychiatry, 2018, 84, 55-64.	1.3	33
10	Activation of EP ₂ receptor suppresses poly(I: C) and LPSâ€mediated inflammation in primary microglia and organotypic hippocampal slice cultures: Contributing role for MAPKs. Glia, 2018, 66, 708-724.	4.9	39
11	Singleâ€cell transcriptomics reveals distinct inflammationâ€induced microglia signatures. EMBO Reports, 2018, 19, .	4.5	186
12	<i>GRIN3B</i> missense mutation as an inherited risk factor for schizophrenia: whole-exome sequencing in a family with a familiar history of psychotic disorders. Genetical Research, 2017, 99, e1.	0.9	15
13	Pathophysiological and behavioral effects of systemic inflammation in aged and diseased rodents with relevance to delirium: A systematic review. Brain, Behavior, and Immunity, 2017, 62, 362-381.	4.1	44
14	Reestablishing microglia function: good news for Alzheimer's therapy?. EMBO Journal, 2017, 36, 565-567.	7.8	2
15	Cellular and Molecular Characterization of Microglia: A Unique Immune Cell Population. Frontiers in Immunology, 2017, 8, 198.	4.8	121
16	Critical dataâ€based reâ€evaluation of minocycline as a putative specific microglia inhibitor. Glia, 2016, 64, 1788-1794.	4.9	137
17	Microglia replenished OHSC: A culture system to study <i>in vivo</i> like adult microglia. Glia, 2016, 64, 1285-1297.	4.9	35
18	Telomere shortening leads to an acceleration of synucleinopathy and impaired microglia response in a genetic mouse model. Acta Neuropathologica Communications, 2016, 4, 87.	5.2	40

#	Article	IF	Citations
19	The microglial ATPâ€gated ion channel P2X7 as a CNS drug target. Glia, 2016, 64, 1772-1787.	4.9	155
20	Age-related myelin degradation burdens the clearance function of microglia during aging. Nature Neuroscience, 2016, 19, 995-998.	14.8	399
21	Synaptic plasticity model of therapeutic sleep deprivation in major depression. Sleep Medicine Reviews, 2016, 30, 53-62.	8.5	66
22	Central nervous system myeloid cells as drug targets: current status and translational challenges. Nature Reviews Drug Discovery, 2016, 15, 110-124.	46.4	97
23	Mechanism of microglia neuroprotection: Involvement of $\langle scp \rangle P2X \langle scp \rangle 7$, $\langle scp \rangle TNF \langle scp \rangle \hat{l}_{\pm}$, and valproic acid. Glia, 2016, 64, 76-89.	4.9	76
24	Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain, Behavior, and Immunity, 2016, 55, 126-137.	4.1	190
25	Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures. Scientific Reports, 2015, 5, 14624.	3.3	82
26	Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a. Neuron, 2015, 87, 549-562.	8.1	168
27	<scp>USP</scp> 18 lack in microglia causes destructive interferonopathy of the mouse brain. EMBO Journal, 2015, 34, 1612-1629.	7.8	178
28	Neuronal CC chemokines: the distinct roles of CCL21 and CCL2 in neuropathic pain. Frontiers in Cellular Neuroscience, 2014, 8, 210.	3.7	64
29	What is microglia neurotoxicity (Not)?. Glia, 2014, 62, 841-854.	4.9	127
30	Identification of a microglia phenotype supportive of remyelination. Glia, 2012, 60, 306-321.	4.9	303
31	Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO Journal, 2011, 30, 1864-1873.	7.8	146
32	Interleukin-6 Upregulates Neuronal Adenosine A1 Receptors: Implications for Neuromodulation and Neuroprotection. Neuropsychopharmacology, 2008, 33, 2237-2250.	5.4	63
33	Neuronal â€~On' and â€~Off' signals control microglia. Trends in Neurosciences, 2007, 30, 596-602.	8.6	690
34	Expression of L-CCR in HEK 293 cells reveals functional responses to CCL2, CCL5, CCL7, and CCL8. Journal of Leukocyte Biology, 2003, 74, 243-251.	3.3	40
35	Chemokines in the brain: neuroimmunology and beyond. Current Opinion in Pharmacology, 2002, 2, 63-68.	3.5	97
36	Ischemia-induced neuronal expression of the microglia attracting chemokine secondary lymphoid-tissue chemokine (SLC). Glia, 2001, 34, 121-133.	4.9	126

Knut Biber

#	Article	IF	CITATIONS
37	Carbamazepine-Induced Upregulation of Adenosine A1-Receptors in Astrocyte Cultures Affects Coupling to the Phosphoinositol Signaling Pathway. Neuropsychopharmacology, 1999, 20, 271-278.	5.4	42
38	Expression and Signaling of Group I Metabotropic Glutamate Receptors in Astrocytes and Microglia. Journal of Neurochemistry, 1999, 72, 1671-1680.	3.9	200