
Christopher Haines

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6613705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	LoCuSS: THE SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES AND THE NEED FOR PRE-PROCESSING. Astrophysical Journal, 2015, 806, 101.	4.5	185
2	LoCuSS: THE STEADY DECLINE AND SLOW QUENCHING OF STAR FORMATION IN CLUSTER GALAXIES OVER THE LAST FOUR BILLION YEARS. Astrophysical Journal, 2013, 775, 126.	4.5	111
3	The different physical mechanisms that drive the star formation histories of giant and dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2007, 381, 7-32.	4.4	110
4	ACCESS – V. Dissecting ram-pressure stripping through integral-field spectroscopy and multiband imaging. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1747-1773.	4.4	94
5	LoCuSS: Testing hydrostatic equilibrium in galaxy clusters. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 456, L74-L78.	3.3	93
6	LOCUSS: THE MID-INFRARED BUTCHER-OEMLER EFFECT. Astrophysical Journal, 2009, 704, 126-136.	4.5	92
7	THE RELATION BETWEEN COOL CLUSTER CORES AND <i>HERSCHEL</i> -DETECTED STAR FORMATION IN BRIGHTEST CLUSTER GALAXIES. Astrophysical Journal, 2012, 747, 29.	4.5	78
8	Shapley Optical Survey - II. The effect of environment on the colour-magnitude relation and galaxy coloursâ~ Monthly Notices of the Royal Astronomical Society, 2006, 371, 55-66.	4.4	76
9	LoCuSS: connecting the dominance and shape of brightest cluster galaxies with the assembly history of massive clusters. Monthly Notices of the Royal Astronomical Society, 2010, 409, 169-183.	4.4	74
10	LoCuSS: A DYNAMICAL ANALYSIS OF X-RAY ACTIVE GALACTIC NUCLEI IN LOCAL CLUSTERS. Astrophysical Journal, 2012, 754, 97.	4.5	67
11	The Different Environmental Dependencies of Star Formation for Giant and Dwarf Galaxies. Astrophysical Journal, 2006, 647, L21-L24.	4.5	63
12	The drivers of AGN activity in galaxy clusters: AGN fraction as a function of mass and environment. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1827-1839.	4.4	60
13	The SDSS-GALEX viewpoint of the truncated red sequence in field environments at z â^1⁄4 0. Monthly Notices of the Royal Astronomical Society, 2008, 385, 1201-1210.	4.4	54
14	The VIMOS Public Extragalactic Redshift Survey (VIPERS). Astronomy and Astrophysics, 2017, 605, A4.	5.1	48
15	LoCuSS: pre-processing in galaxy groups falling into massive galaxy clusters at <i>z</i> = 0.2. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L79-L83.	3.3	46
16	On the origin of the scatter around the Fundamental Plane: correlations with stellar population parameters. Monthly Notices of the Royal Astronomical Society, 2009, 397, 75-89.	4.4	45
17	LoCuSS: luminous infrared galaxies in the merging cluster Abell 1758 at <i>z</i> = 0.28. Monthly Notices of the Royal Astronomical Society, 2009, 396, 1297-1307.	4.4	43
18	Shapley Supercluster Survey: ram-pressure stripping versus tidal interactions in the Shapley supercluster. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3345-3369.	4.4	43

#	Article	IF	CITATIONS
19	THE RELATION BETWEEN LUMINOUS AGNs AND STAR FORMATION IN THEIR HOST GALAXIES. Astrophysical Journal, 2015, 808, 159.	4.5	42
20	Shapley Optical Survey - I. Luminosity functions in the supercluster environment. Monthly Notices of the Royal Astronomical Society, 2006, 368, 109-120.	4.4	40
21	The SDSSâ€UKIDSS Fundamental Plane of Earlyâ€Type Galaxies. Astrophysical Journal, 2008, 689, 913-918.	4.5	39
22	Star formation in the massive cluster merger Abell 2744. Monthly Notices of the Royal Astronomical Society, 2014, 442, 196-206.	4.4	39
23	Slow-then-rapid quenching as traced by tentative evidence for enhanced metallicities of cluster galaxies at <i>z</i> â ⁻¹ /4 0.2 in the slow quenching phase. Astronomy and Astrophysics, 2019, 621, A131.	5.1	39
24	LoCuSS: Probing galaxy transformation physics with <i>Herschel</i> . Astronomy and Astrophysics, 2010, 518, L18.	5.1	37
25	Star formation activity and gas stripping in the Cluster Projected Phase-Space (CPPS). Monthly Notices of the Royal Astronomical Society, 2014, 438, 2186-2200.	4.4	35
26	The VIMOS Public Extragalactic Redshift Survey (VIPERS). Astronomy and Astrophysics, 2017, 597, A107.	5.1	34
27	LoCuSS: The infall of X-ray groups on to massive clusters. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4931-4950.	4.4	33
28	The VIMOS Public Extragalactic Redshift Survey (VIPERS). Astronomy and Astrophysics, 2017, 598, A120.	5.1	32
29	The VIMOS Public Extragalactic Redshift Survey (VIPERS). Astronomy and Astrophysics, 2018, 617, A70.	5.1	32
30	A <i>HERSCHEL</i> STUDY OF 24 <i>μ</i> m-SELECTED AGNs AND THEIR HOST GALAXIES. Astrophysical Journal, Supplement Series, 2015, 219, 18.	7.7	30
31	LoCuSS: A <i>Herschel</i> view of obscured star formation in Abell 1835. Astronomy and Astrophysics, 2010, 518, L40.	5.1	27
32	ACCESS: NIR luminosity function and stellar mass function of galaxies in the Shapley supercluster environment. Monthly Notices of the Royal Astronomical Society, 2010, 402, 753-766.	4.4	25
33	ACCESS - II. A complete census of star formation in the Shapley supercluster - UV and IR luminosity functions. Monthly Notices of the Royal Astronomical Society, 2011, 412, 127-144.	4.4	25
34	Shapley Supercluster Survey: Galaxy evolution from filaments to cluster cores. Monthly Notices of the Royal Astronomical Society, 2015, 446, 803-822.	4.4	25
35	Galaxy evolution in merging clusters: The passive core of the "Train Wreck―cluster of galaxies, A 520. Astronomy and Astrophysics, 2017, 607, A131.	5.1	24
36	LoCuSS: Shedding new light on the massive lensing cluster Abell 1689 – the view from <i>Herschel</i> . Astronomy and Astrophysics, 2010, 518, L19.	5.1	23

#	Article	IF	CITATIONS
37	The galaxy environment of a quasar at z = 1.226: a possible cluster merger. Monthly Notices of the Royal Astronomical Society, 2001, 323, 688-698.	4.4	22
38	Quantifying the suppression of the (un)-obscured star formation in galaxy cluster cores at 0.2≲ <i>z</i> ≲0.9. Monthly Notices of the Royal Astronomical Society, 2019, 485, 586-619.	4.4	20
39	A few StePS forward in unveiling the complexity of galaxy evolution: light-weighted stellar ages of intermediate-redshift galaxies with WEAVE. Astronomy and Astrophysics, 2019, 632, A9.	5.1	18
40	Weak lensing mass reconstruction of the galaxy cluster AbellÂ209. Astronomy and Astrophysics, 2007, 467, 427-436.	5.1	17
41	ACCESS - III. The nature of star formation in the Shapley supercluster. Monthly Notices of the Royal Astronomical Society, 2011, 412, 145-160.	4.4	17
42	Transformations of galaxies in the environments of the cluster ABCG 209 atz\$mathsf{sim}\$ 0.2. Astronomy and Astrophysics, 2004, 424, 79-90.	5.1	14
43	The VIMOS Public Extragalactic Redshift Survey (VIPERS). Astronomy and Astrophysics, 2018, 620, A193.	5.1	14
44	New insights into the structure of early-type galaxies: the Photometric Plane atzâ^¼ 0.3. Monthly Notices of the Royal Astronomical Society, 2005, 358, 1116-1132.	4.4	12
45	LoCuSS: The Splashback Radius of Massive Galaxy Clusters and Its Dependence on Cluster Merger History. Astrophysical Journal, 2021, 911, 136.	4.5	11
46	Molecular gas and star formation activity in luminous infrared galaxies in clusters at intermediate redshifts. Astronomy and Astrophysics, 2020, 640, A64.	5.1	11
47	THE CLOWES-CAMPUSANO LARGE QUASAR GROUP SURVEY. I. <i>GALEX</i> SELECTED SAMPLE OF LYMAN BREAK GALAXIES AT <i>z</i> â ¹ /4 1. Astrophysical Journal, 2009, 702, 506-522.	4.5	10
48	Shapley Supercluster Survey: mapping the filamentary network connecting the clusters. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1055-1074.	4.4	10
49	Forming One of the Most Massive Objects in the Universe: The Quadruple Merger in Abell 1758. Astrophysical Journal, 2019, 882, 59.	4.5	10
50	GLACE survey: OSIRIS/GTC tuneable filter H <i>α</i> imaging of the rich galaxy cluster ZwCl 0024.0+1652 at <i>z</i> = 0.395. Astronomy and Astrophysics, 2015, 578, A30.	5.1	10
51	Galaxy evolution in the environment of ABCGÂ209. Astronomy and Astrophysics, 2004, 425, 783-796.	5.1	10
52	Detection of 20–30Âh\$mathsf{^{-1}}\$ÂMpc-scale galaxy structures embedded in 100Âh\$mathsf{^{-1}}\$ÂMpc-scale structures of quasars and MgII absorbers at \$extit{z}simeqmathsf{0.8}\$ and \$extit{z} simeqmathsf{1.2}\$. Astronomy and Astrophysics, 2004, 421, 157-174.	5.1	10
53	Star-formation quenching of cluster galaxies as traced by metallicity and presence of active galactic nuclei, and galactic conformity. Astronomy and Astrophysics, 2022, 658, A190.	5.1	10
54	Shapley Supercluster Survey: construction of the photometric catalogues and <i>i</i> -band data release. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3686-3699.	4.4	9

#	Article	IF	CITATIONS
55	A 3D Voronoi+Gapper Galaxy Cluster Finder in Redshift Space to zÂâ^1⁄4Â0.2 I: an Algorithm Optimized for the 2dFGRS. Astrophysical Journal, 2017, 838, 109.	4.5	8
56	ACCESS - IV. The quenching of star formation in a cluster population of dusty SOs. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2831-2845.	4.4	7
57	LoCuSS: exploring the connection between local environment, star formation, and dust mass in Abell 1758. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4599-4612.	4.4	7
58	Cosmic dance in the Shapley Concentration Core. Astronomy and Astrophysics, 2018, 620, A25.	5.1	5
59	An Interacting Galaxy Pair at the Origin of a Light Echo. Astrophysical Journal, 2018, 852, 113.	4.5	4
60	Mapping the working of environmental effects in A963. Astronomy and Astrophysics, 2020, 638, A126.	5.1	4
61	A WEAK-LENSING AND NEAR-INFRARED STUDY OF A3192: DISASSEMBLING A RICHNESS CLASS 3 ABELL CLUSTER. Astrophysical Journal Letters, 2012, 748, L23.	8.3	4
62	The contribution of non-central radio galaxies to AGN feedback in rich galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3273-3288.	4.4	4
63	Global properties of the rich cluster ABCG 209 at <i>z</i> â ¹ /4 0.2. Spectroscopic and photometric catalogue. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1374-1390.	4.4	3
64	DRY MERGER RATE AND POST-MERGER FRACTION IN THE COMA CLUSTER CORE. Astrophysical Journal Letters, 2016, 817, L6.	8.3	3
65	A 3D Voronoi+Gapper Galaxy Cluster Finder in Redshift Space to zÂâ^1⁄4Â0.2. II. An Abundant Cluster Population Dominated by Late-type Galaxies Unveiled. Astrophysical Journal, 2018, 869, 145.	4.5	1
66	The Galaxy Environment of Quasars in the z â.•1.3 Clowes-Campusano Large Quasar Group. Symposium - International Astronomical Union, 2005, 201, 465-466.	0.1	0
67	Galaxy Transformations in Different Environments of the Shapley Supercluster. Proceedings of the International Astronomical Union, 2006, 2, 224-224.	0.0	0
68	UV–IR Luminosity Functions and Stellar Mass Functions of Galaxies in the Shapley Supercluster Core. Thirty Years of Astronomical Discovery With UKIRT, 2011, , 55-60.	0.3	0