Lee Stevens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6612257/publications.pdf

Version: 2024-02-01

516710 580821 1,378 25 27 16 citations h-index g-index papers 28 28 28 2320 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The effect of oil extraction on porosity and methane adsorption for dry and moisture-equilibrated shales. Fuel, 2022, 316, 123304.	6.4	3
2	Efficient dye-removal via Ni-decorated graphene oxide-carbon nanotube nanocomposites. Materials Chemistry and Physics, 2021, 260, 124117.	4.0	20
3	Comparison of the impact of moisture on methane adsorption and nanoporosity for over mature shales and their kerogens. International Journal of Coal Geology, 2021, 237, 103705.	5.0	14
4	Pore structural evolution of shale following thermochemical treatment. Marine and Petroleum Geology, 2020, 112, 104058.	3.3	16
5	Functionalization of Silica SBA-15 with [3-(2-Aminoethylamino)Propyl] Trimethoxysilane in Supercritical CO2 Modified with Methanol or Ethanol for Carbon Capture. Energies, 2020, 13, 5804.	3.1	13
6	Structural and chemical heterogeneity in ancient glass probed using gas overcondensation, X-ray tomography, and solid-state NMR. Materials Characterization, 2020, 167, 110467.	4.4	5
7	Synthesis of functionalized 3D microporous carbon foams for selective CO2 capture. Chemical Engineering Journal, 2020, 402, 125459.	12.7	20
8	Formation of Metallurgical Coke within Minutes through Coal Densification and Microwave Energy. Energy & Samp; Fuels, 2019, 33, 6817-6828.	5.1	13
9	Mesocellular silica foam supported polyamine adsorbents for dry CO2 scrubbing: Performance of single versus blended polyamines for impregnation. Applied Energy, 2019, 255, 113643.	10.1	23
10	Reduced Graphene Oxide-NiO Photocathodes for p-Type Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 7345-7353.	5.1	15
11	Continuous testing of silica-PEI adsorbents in a labscale twin bubbling fluidized-bed system. International Journal of Greenhouse Gas Control, 2019, 82, 184-191.	4.6	19
12	Understanding the unusual fluidity characteristics of high ash Indian bituminous coals. Fuel Processing Technology, 2018, 176, 258-266.	7.2	5
13	High Density and Super Ultraâ€Microporousâ€Activated Carbon Macrospheres with High Volumetric Capacity for CO ₂ Capture. Advanced Sustainable Systems, 2018, 2, 1700115.	5.3	30
14	Bed Height of Zeolite Affected CO2 Hydrate Formation Using High Pressure Volumetric Analyzer. Asian Journal of Chemistry, 2018, 30, 2269-2272.	0.3	0
15	Direct primary brown coal liquefaction via non-catalytic and catalytic co-processing with model, waste and petroleum-derived hydrogen donors. Fuel, 2018, 234, 364-370.	6.4	22
16	Determination of Pore Network Accessibility in Hierarchical Porous Solids. Industrial & Samp; Engineering Chemistry Research, 2017, 56, 14822-14831.	3.7	7
17	Evaluation of hydrochars from lignin hydrous pyrolysis to produce biocokes after carbonization. Journal of Analytical and Applied Pyrolysis, 2017, 124, 742-751.	5.5	21
18	A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion. Physical Chemistry Chemical Physics, 2016, 18, 10727-10738.	2.8	135

LEE STEVENS

#	ARTICLE	IF	CITATIONS
19	Ni Mg Mixed Metal Oxides for p-Type Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24556-24565.	8.0	34
20	Surface Bespoke Mesoporous Silica for Carbon Dioxide Adsorption. Journal of Environmental Engineering, ASCE, 2014, 140, 04014031.	1.4	0
21	Experimental study of mercury removal from exhaust gases. Fuel, 2014, 128, 451-457.	6.4	88
22	Swellable, Water- and Acid-Tolerant Polymer Sponges for Chemoselective Carbon Dioxide Capture. Journal of the American Chemical Society, 2014, 136, 9028-9035.	13.7	201
23	Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route. Chemical Engineering Journal, 2013, 215-216, 699-708.	12.7	74
24	High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel, 2013, 109, 559-562.	6.4	39
25	Synthesis, characterization and evaluation of activated spherical carbon materials for CO2 capture. Fuel, 2013, 113, 854-862.	6.4	47
26	Impact of Water Coadsorption for Carbon Dioxide Capture in Microporous Polymer Sorbents. Journal of the American Chemical Society, 2012, 134, 10741-10744.	13.7	259
27	Materials challenges for the development of solid sorbents for post-combustion carbon capture. Journal of Materials Chemistry, 2012, 22, 2815-2823.	6.7	255