
Renée van Amerongen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6610540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Behind the Scenes of the Human Breast Cell Atlas Project. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 67-70.	2.7	4
2	Connecting the Dots: Mammary Gland and Breast Cancer at Single Cell Resolution. Journal of Mammary Gland Biology and Neoplasia, 2021, 26, 1-2.	2.7	3
3	MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus. Development (Cambridge), 2021, 148, .	2.5	13
4	Quantitative live-cell imaging and computational modeling shed new light on endogenous WNT/CTNNB1 signaling dynamics. ELife, 2021, 10, .	6.0	21
5	Zooming in on the WNT/CTNNB1 Destruction Complex: Functional Mechanistic Details with Implications for Therapeutic Targeting. Handbook of Experimental Pharmacology, 2021, 269, 137-173.	1.8	5
6	A novel <scp> <i>Axin2 </i> </scp> knockâ€in mouse model for visualization and lineage tracing of <scp>WNT </scp> / <scp>CTNNB1 </scp> responsive cells. Genesis, 2020, 58, e23387.	1.6	17
7	Aberrant WNT/CTNNB1 Signaling as a Therapeutic Target in Human Breast Cancer: Weighing the Evidence. Frontiers in Cell and Developmental Biology, 2020, 8, 25.	3.7	66
8	TMEM98 is a negative regulator of FRAT mediated Wnt/ß-catenin signalling. PLoS ONE, 2020, 15, e0227435.	2.5	3
9	Celebrating Discoveries in Wnt Signaling: How One Man Gave Wings to an Entire Field. Cell, 2020, 181, 487-491.	28.9	11
10	Walking the tight wire between cell adhesion and WNT signalling: a balancing act for β-catenin. Open Biology, 2020, 10, 200267.	3.6	49
11	How to Use Online Tools to Generate New Hypotheses for Mammary Gland Biology Research: A Case Study for Wnt7b. Journal of Mammary Gland Biology and Neoplasia, 2020, 25, 319-335.	2.7	2
12	TMEM98 is a negative regulator of FRAT mediated Wnt/ß-catenin signalling. , 2020, 15, e0227435.		0
13	TMEM98 is a negative regulator of FRAT mediated Wnt/ß-catenin signalling. , 2020, 15, e0227435.		0
14	TMEM98 is a negative regulator of FRAT mediated Wnt/ß-catenin signalling. , 2020, 15, e0227435.		0
15	TMEM98 is a negative regulator of FRAT mediated Wnt/ß-catenin signalling. , 2020, 15, e0227435.		0
16	TMEM98 is a negative regulator of FRAT mediated Wnt/ß-catenin signalling. , 2020, 15, e0227435.		0
17	TMEM98 is a negative regulator of FRAT mediated Wnt/ß-catenin signalling. , 2020, 15, e0227435.		0
18	Wnt signalling: conquering complexity. Development (Cambridge), 2018, 145, .	2.5	180

Renée van Amerongen

#	Article	IF	CITATIONS
19	Lineage Tracing of Mammary Stem and Progenitor Cells. Methods in Molecular Biology, 2017, 1501, 291-308.	0.9	8
20	Construction and Experimental Validation of a Petri Net Model of Wnt/β-Catenin Signaling. PLoS ONE, 2016, 11, e0155743.	2.5	16
21	Generating Cellular Diversity and Spatial Form: Wnt Signaling and the Evolution of Multicellular Animals. Developmental Cell, 2016, 38, 643-655.	7.0	254
22	PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma. Cell Reports, 2016, 16, 2087-2101.	6.4	42
23	Identification of reliable reference genes for qRT-PCR studies of the developing mouse mammary gland. Scientific Reports, 2016, 6, 35595.	3.3	21
24	The seventh ENBDC workshop on methods in mammary gland development and cancer. Breast Cancer Research, 2015, 17, 119.	5.0	0
25	Lineage Tracing in the Mammary Gland Using Cre/lox Technology and Fluorescent Reporter Alleles. Methods in Molecular Biology, 2015, 1293, 187-211.	0.9	8
26	Bipotent mammary stem cells: now in amazing 3D. Breast Cancer Research, 2014, 16, 480.	5.0	2
27	The Role of Ryk and Ror Receptor Tyrosine Kinases in Wnt Signal Transduction. Cold Spring Harbor Perspectives in Biology, 2014, 6, a009175-a009175.	5.5	150
28	Phenotype Switching: Tumor Cell Plasticity as a Resistance Mechanism and Target for Therapy. Cancer Research, 2014, 74, 5937-5941.	0.9	183
29	The influence of tamoxifen on normal mouse mammary gland homeostasis. Breast Cancer Research, 2014, 16, 411.	5.0	40
30	Interfollicular Epidermal Stem Cells Self-Renew via Autocrine Wnt Signaling. Science, 2013, 342, 1226-1230.	12.6	316
31	Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Development (Cambridge), 2013, 140, 1196-1206.	2.5	87
32	Break the loop, escape the cycle?. EMBO Journal, 2013, 32, 1967-1969.	7.8	0
33	Lineage tracing with Axin2 reveals distinct developmental and adult populations of Wnt/l²-catenin–responsive neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7324-7329.	7.1	87
34	Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14456-14461.	7.1	17
35	Frat2 mediates the oncogenic activation of Rac by MLL fusions. Blood, 2012, 120, 4819-4828.	1.4	19
36	Celebrating 30 Years of Wnt Signaling Meeting Information: EMBO Conference—30 Years of Wnt Signalling, 27 June to 1 July 2012, Egmond aan Zee, Netherlands. Science Signaling, 2012, 5, mr2.	3.6	18

Renée van Amerongen

#	Article	IF	CITATIONS
37	Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Developmental Biology, 2012, 369, 101-114.	2.0	185
38	Alternative Wnt Pathways and Receptors. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007914-a007914.	5.5	174
39	Developmental Stage and Time Dictate the Fate of Wnt/β-Catenin-Responsive Stem Cells in the Mammary Gland. Cell Stem Cell, 2012, 11, 387-400.	11.1	414
40	Towards an integrated view of Wnt signaling in development. Development (Cambridge), 2009, 136, 3205-3214.	2.5	1,021
41	Alternative Wnt Signaling Is Initiated by Distinct Receptors. Science Signaling, 2008, 1, re9.	3.6	302
42	Targeted Anticancer Therapies: Mouse Models Help Uncover the Mechanisms of Tumor Escape. Cancer Cell, 2008, 13, 5-7.	16.8	12
43	Knockout mouse models to study Wnt signal transduction. Trends in Genetics, 2006, 22, 678-689.	6.7	154
44	TXR1-mediated thrombospondin repression: a novel mechanism of resistance to taxanes?. Genes and Development, 2006, 20, 1975-1981.	5.9	15
45	Frat is dispensable for canonical Wnt signaling in mammals. Genes and Development, 2005, 19, 425-430.	5.9	61
46	Re-Evaluating the Role of Frat in Wnt-Signal Transduction. Cell Cycle, 2005, 4, 4065-4072.	2.6	13
47	Re-evaluating the role of Frat in Wnt-signal transduction. Cell Cycle, 2005, 4, 1065-72.	2.6	24
48	Characterization and Functional Analysis of the Murine Frat2 Gene. Journal of Biological Chemistry, 2004, 279, 26967-26974.	3.4	24
49	In vivo analysis of Frat1 deficiency suggests compensatory activity of Frat3. Mechanisms of Development, 1999, 88, 183-194.	1.7	38