Virginia M Pascual

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6609857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interferon and Granulopoiesis Signatures in Systemic Lupus Erythematosus Blood. Journal of Experimental Medicine, 2003, 197, 711-723.	8.5	1,760
2	An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466, 973-977.	27.8	1,632
3	Human Blood CXCR5+CD4+ T Cells Are Counterparts of T Follicular Cells and Contain Specific Subsets that Differentially Support Antibody Secretion. Immunity, 2011, 34, 108-121.	14.3	1,376
4	Induction of Dendritic Cell Differentiation by IFN-α in Systemic Lupus Erythematosus. Science, 2001, 294, 1540-1543.	12.6	1,160
5	Plasmacytoid Dendritic Cells Induce Plasma Cell Differentiation through Type I Interferon and Interleukin 6. Immunity, 2003, 19, 225-234.	14.3	929
6	Type I Interferon in Systemic Lupus Erythematosus and Other Autoimmune Diseases. Immunity, 2006, 25, 383-392.	14.3	840
7	Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell, 2020, 182, 1044-1061.e18.	28.9	691
8	A Modular Analysis Framework for Blood Genomics Studies: Application to Systemic Lupus Erythematosus. Immunity, 2008, 29, 150-164.	14.3	623
9	Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell, 2016, 165, 551-565.	28.9	524
10	Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. Journal of Experimental Medicine, 2016, 213, 697-713.	8.5	363
11	TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature, 2010, 465, 937-941.	27.8	320
12	Modular Transcriptional Repertoire Analyses of Adults With Systemic Lupus Erythematosus Reveal Distinct Type I and Type II Interferon Signatures. Arthritis and Rheumatology, 2014, 66, 1583-1595.	5.6	302
13	Systems Scale Interactive Exploration Reveals Quantitative and Qualitative Differences in Response to Influenza and Pneumococcal Vaccines. Immunity, 2013, 38, 831-844.	14.3	284
14	Systemic lupus erythematosus: all roads lead to type I interferons. Current Opinion in Immunology, 2006, 18, 676-682.	5.5	254
15	Increased Frequency of Pre-germinal Center B Cells and Plasma Cell Precursors in the Blood of Children with Systemic Lupus Erythematosus. Journal of Immunology, 2001, 167, 2361-2369.	0.8	231
16	Blood leukocyte microarrays to diagnose systemic onset juvenile idiopathic arthritis and follow the response to IL-1 blockade. Journal of Experimental Medicine, 2007, 204, 2131-2144.	8.5	215
17	Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nature Immunology, 2020, 21, 1094-1106.	14.5	212
18	TLR7 gain-of-function genetic variation causes human lupus. Nature, 2022, 605, 349-356.	27.8	208

VIRGINIA M PASCUAL

#	Article	IF	CITATIONS
19	A CD4+ T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate. Nature Medicine, 2019, 25, 75-81.	30.7	189
20	A Genomic Approach to Human Autoimmune Diseases. Annual Review of Immunology, 2010, 28, 535-571.	21.8	137
21	IL1 Receptor Antagonist Controls Transcriptional Signature of Inflammation in Patients with Metastatic Breast Cancer. Cancer Research, 2018, 78, 5243-5258.	0.9	119
22	Host Immune Transcriptional Profiles Reflect the Variability in Clinical Disease Manifestations in Patients with Staphylococcus aureus Infections. PLoS ONE, 2012, 7, e34390.	2.5	100
23	Blood dendritic cells and DC-poietins in systemic lupus erythematosus. Human Immunology, 2002, 63, 1172-1180.	2.4	92
24	Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE. Cell, 2021, 184, 4464-4479.e19.	28.9	90
25	The Transcriptional Signature of Active Tuberculosis Reflects Symptom Status in Extra-Pulmonary and Pulmonary Tuberculosis. PLoS ONE, 2016, 11, e0162220.	2.5	81
26	A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4. Nature Immunology, 2014, 15, 1134-1142.	14.5	75
27	Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nature Communications, 2019, 10, 2201.	12.8	73
28	Differences in Antibody Responses Between Trivalent Inactivated Influenza Vaccine and Live Attenuated Influenza Vaccine Correlate With the Kinetics and Magnitude of Interferon Signaling in Children. Journal of Infectious Diseases, 2014, 210, 224-233.	4.0	69
29	Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases. Nature Communications, 2019, 10, 2887.	12.8	65
30	Longitudinal profiling of human blood transcriptome in healthy and lupus pregnancy. Journal of Experimental Medicine, 2019, 216, 1154-1169.	8.5	56
31	Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines. Nature Communications, 2014, 5, 5283.	12.8	51
32	Extracellular vesicle– and particle-mediated communication shapes innate and adaptive immune responses. Journal of Experimental Medicine, 2021, 218, .	8.5	47
33	IFN Priming Is Necessary but Not Sufficient To Turn on a Migratory Dendritic Cell Program in Lupus Monocytes. Journal of Immunology, 2014, 192, 5586-5598.	0.8	40
34	The E3 ubiquitin ligase Itch inhibits p38α signaling and skin inflammation through the ubiquitylation of Tab1. Science Signaling, 2015, 8, ra22.	3.6	37
35	The immune roadmap for understanding multi-system inflammatory syndrome in children: opportunities and challenges. Nature Medicine, 2020, 26, 1819-1824.	30.7	32
36	Single Cell Analysis of Blood Mononuclear Cells Stimulated Through Either LPS or Anti-CD3 and Anti-CD28. Frontiers in Immunology, 2021, 12, 636720.	4.8	32

#	Article	IF	CITATIONS
37	Development of a fixed module repertoire for the analysis and interpretation of blood transcriptome data. Nature Communications, 2021, 12, 4385.	12.8	29
38	The Blood Transcriptome of Experimental Melioidosis Reflects Disease Severity and Shows Considerable Similarity with the Human Disease. Journal of Immunology, 2015, 195, 3248-3261.	0.8	20
39	Analysis of Transcriptional Signatures in Response to Listeria monocytogenes Infection Reveals Temporal Changes That Result from Type I Interferon Signaling. PLoS ONE, 2016, 11, e0150251.	2.5	10
40	Mass Cytometry Defines Virus-Specific CD4+ T Cells in Influenza Vaccination. ImmunoHorizons, 2020, 4, 774-788.	1.8	3
41	Breaching self-tolerance by targeting the gatekeeper. Journal of Experimental Medicine, 2021, 218, .	8.5	1