Eimear M Nic Lughadha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6609675/publications.pdf

Version: 2024-02-01

84 papers 4,843 citations

38 h-index 64 g-index

85 all docs 85 docs citations

85 times ranked 5278 citing authors

#	Article	IF	CITATIONS
1	Quantifying and mapping angiosperm endemism in the <i>Araucaria </i> Forest. Botanical Journal of the Linnean Society, 2022, 199, 449-469.	1.6	1
2	Future directions for the discovery of natural product-derived immunomodulating drugs: an IUPHAR positional review. Pharmacological Research, 2022, 177, 106076.	7.1	23
3	Brazilian Flora 2020: Leveraging the power of a collaborative scientific network. Taxon, 2022, 71, 178-198.	0.7	68
4	A metric for spatially explicit contributions to science-based species targets. Nature Ecology and Evolution, 2021, 5, 836-844.	7.8	61
5	Botanical Monography in the Anthropocene. Trends in Plant Science, 2021, 26, 433-441.	8.8	23
6	Testing a global standard for quantifying species recovery and assessing conservation impact. Conservation Biology, 2021, 35, 1833-1849.	4.7	51
7	Areas Requiring Restoration Efforts are a Complementary Opportunity to Support the Demand for Pollination Services in Brazil. Environmental Science & Environmental Science & 2021, 55, 12043-12053.	10.0	9
8	Projected impacts of climate and land use changes on the habitat of Atlantic Forest plants in Brazil. Global Ecology and Biogeography, 2021, 30, 2016-2028.	5.8	12
9	The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Scientific Data, 2021, 8, 215.	5.3	176
10	Building robust, practicable counterfactuals and scenarios to evaluate the impact of species conservation interventions using inferential approaches. Biological Conservation, 2021, 261, 109259.	4.1	7
11	Plants used traditionally as antimalarials in Latin America: Mining the tree of life for potential new medicines. Journal of Ethnopharmacology, 2021, 279, 114221.	4.1	11
12	How much of the Caatinga is legally protected? An analysis of temporal and geographical coverage of protected areas in the Brazilian semiarid region. Acta Botanica Brasilica, 2021, 35, 473-485.	0.8	27
13	Extinction risk and threats to plants and fungi. Plants People Planet, 2020, 2, 389-408.	3.3	242
14	Molecules from nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet, 2020, 2, 463-481.	3.3	88
15	New scientific discoveries: Plants and fungi. Plants People Planet, 2020, 2, 371-388.	3.3	163
16	Evolutionary patterns in the geographic range size of Atlantic Forest plants. Ecography, 2020, 43, 1510-1520.	4.5	15
17	New Guinea has the world's richest island flora. Nature, 2020, 584, 579-583.	27.8	108
18	International collaboration between collectionsâ€based institutes for halting biodiversity loss and unlocking the useful properties of plants and fungi. Plants People Planet, 2020, 2, 515-534.	3.3	25

#	Article	IF	Citations
19	Caution Needed When Predicting Species Threat Status for Conservation Prioritization on a Global Scale. Frontiers in Plant Science, 2020, 11, 520.	3.6	24
20	Reply to: Regional records improve data quality in determining plant extinction rates. Nature Ecology and Evolution, 2020, 4, 515-516.	7.8	5
21	The importance of the Brazilian Subtropical Highland Grasslands evidenced by a taxonomically verified endemic species list . Phytotaxa, 2020, 452, 250-267.	0.3	7
22	Plotting a future for Amazonian canga vegetation in a campo rupestre context. PLoS ONE, 2019, 14, e0219753.	2.5	31
23	A New Subtribal Classification of Tribe Myrteae (Myrtaceae). Systematic Botany, 2019, 44, 560-569.	0.5	44
24	Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nature Ecology and Evolution, 2019, 3, 1043-1047.	7.8	247
25	Towards a scientific rationale for traditional properties of Chinese medicinal plants: "natures―and "flavors― Chinese Herbal Medicines, 2019, 11, 258-266.	3.0	4
26	Progress, challenges and opportunities for Red Listing. Biological Conservation, 2019, 234, 45-55.	4.1	111
27	Harnessing the potential of integrated systematics for conservation of taxonomically complex, megadiverse plant groups. Conservation Biology, 2019, 33, 511-522.	4.7	25
28	Enhancement of conservation knowledge through increased access to botanical information. Conservation Biology, 2019, 33, 523-533.	4.7	28
29	A Preliminary Evaluation of The Karst Flora of Brazil Using Collections Data. Scientific Reports, 2019, 9, 17037.	3.3	19
30	The use and misuse of herbarium specimens in evaluating plant extinction risks. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170402.	4.0	77
31	High extinction risk for wild coffee species and implications for coffee sector sustainability. Science Advances, 2019, 5, eaav3473.	10.3	113
32	Quantifying progress toward a conservation assessment for all plants. Conservation Biology, 2018, 32, 516-524.	4.7	61
33	Important Plant Areas: revised selection criteria for a global approach to plant conservation. Biodiversity and Conservation, 2017, 26, 1767-1800.	2.6	160
34	Plant States and Fates: Response to Pimm and Raven. Trends in Ecology and Evolution, 2017, 32, 887-889.	8.7	30
35	Lectotypification of eighteen names in Graffenrieda (Melastomataceae). Kew Bulletin, 2017, 72, 1.	0.9	1
36	Plant Biodiversity Drivers in Brazilian Campos Rupestres: Insights from Phylogenetic Structure. Frontiers in Plant Science, 2017, 8, 2141.	3.6	73

#	Article	IF	Citations
37	Assessing the Cost of Global Biodiversity and Conservation Knowledge. PLoS ONE, 2016, 11, e0160640.	2.5	65
38	Lectotypification of species names in Adelobotrys (Merianieae, Melastomataceae). Phytotaxa, 2016, 269, 65.	0.3	О
39	A Phytogeographical Metaanalysis of the Semiarid Caatinga Domain in Brazil. Botanical Review, The, 2016, 82, 91-148.	3.9	139
40	Two new species of Graffenrieda (Melastomataceae, Merianieae) from the Amazon Rainforest. Phytotaxa, 2016, 267, 77.	0.3	2
41	Counting counts: revised estimates of numbers of accepted species of flowering plants, seed plants, vascular plants and land plants with a review of other recent estimates. Phytotaxa, 2016, 272, 82.	0.3	134
42	Flora of Brazil Online: Can Brazil's botanists achieve their 2020 vision?. Rodriguesia, 2015, 66, 1115-1135.	0.9	17
43	The Role of Edaphic Environment and Climate in Structuring Phylogenetic Pattern in Seasonally Dry Tropical Plant Communities. PLoS ONE, 2015, 10, e0119166.	2.5	54
44	Exchange of useful plants between Brazil and England in the second half of the nineteenth century: Glaziou and the botanists of the Royal Botanic Gardens, Kew. Kew Bulletin, 2015, 70, 1.	0.9	3
45	The Sampled Red List Index for Plants, phase II: ground-truthing specimen-based conservation assessments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140015.	4.0	45
46	Useful Brazilian plants listed in the manuscripts and publications of the Scottish medic and naturalist George Gardner (1812–1849). Journal of Ethnopharmacology, 2015, 161, 18-29.	4.1	31
47	Green Plants in the Red: A Baseline Global Assessment for the IUCN Sampled Red List Index for Plants. PLoS ONE, 2015, 10, e0135152.	2.5	243
48	Do species conservation assessments capture genetic diversity?. Global Ecology and Conservation, 2014, 2, 81-87.	2.1	60
49	A catalogue of the vascular plants of the Caatinga Phytogeographical Domain: a synthesis of floristic and phytosociological surveys <p align="center" class="HeadingRunIn"> . Phytotaxa, 2014, 160, 1.</p>	0.3	111
50	Hidden in the dry woods: Mapping the collection history and distribution of <i>Gymnanthes boticario</i> , a well-collected but very recently described species restricted to the dry vegetation of South America. Phytotaxa, 2013, 97, 1.	0.3	10
51	New Brazilian Floristic List Highlights Conservation Challenges. BioScience, 2012, 62, 39-45.	4.9	270
52	A new species and a replacement name in Myrcia (Gomidesia; Myrtaceae) from north-eastern Brazil. Kew Bulletin, 2012, 67, 19-24.	0.9	2
53	Additions to Myrcia s.l. from Eastern Brazil â€" taxonomic and nomenclatural novelties in Myrcia s.l. (Myrtaceae). Kew Bulletin, 2012, 67, 235-243.	0.9	6
54	Phylogenetics, Morphology, and Evolution of the Large Genus <i>Myrcia</i> s.l. (Myrtaceae). International Journal of Plant Sciences, 2011, 172, 915-934.	1.3	94

#	Article	IF	CITATIONS
55	How many herbarium specimens are needed to detect threatened species?. Biological Conservation, 2011, 144, 2541-2547.	4.1	113
56	The Role of Botanic Gardens in the Science and Practice of Ecological Restoration. Conservation Biology, 2011, 25, no-no.	4.7	48
57	The irresistible target meets the unachievable objective: what have 8 years of GSPC implementation taught us about target setting and achievable objectives?. Botanical Journal of the Linnean Society, 2011, 166, 250-260.	1.6	34
58	Science and development of government policy post-Global Strategy for Plant Conservation: lessons for the future. Botanical Journal of the Linnean Society, 2011, 166, 213-216.	1.6	5
59	Genetic variation in Delonix s.l. (Leguminosae) in Madagascar revealed by AFLPs: fragmentation, conservation status and taxonomy. Conservation Genetics, 2011, 12, 1333-1344.	1.5	10
60	Three new species of Myrcia section Gomidesia (Myrtaceae) â€" from EspÃrito Santo, Brazil. Kew Bulletin, 2010, 65, 21-28.	0.9	4
61	Subpopulations, locations and fragmentation: applying IUCN red list criteria to herbarium specimen data. Biodiversity and Conservation, 2010, 19, 2071-2085.	2.6	63
62	Plant Diversity Hotspots in the Atlantic Coastal Forests of Brazil. Conservation Biology, 2009, 23, 151-163.	4.7	215
63	Accelerating global access to plant diversity information. Trends in Plant Science, 2009, 14, 622-628.	8.8	22
64	Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon, 2007, 56, 1105-1128.	0.7	156
65	<l>Algrizea</l> (I) (Myrteae, Myrtaceae): A New Genus from the Highlands of Brazil. Systematic Botany, 2006, 31, 320-326.	0.5	18
66	Phylogenetic patterns in the fleshy-fruited Myrtaceae ? preliminary molecular evidence. Plant Systematics and Evolution, 2005, 251, 35-51.	0.9	66
67	Measuring the fate of plant diversity: towards a foundation for future monitoring and opportunities for urgent action. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 359-372.	4.0	66
68	Taxonomic inflation, species concepts and global species lists. Trends in Ecology and Evolution, 2005, 20, 7-8.	8.7	41
69	Stability or stasis in the names of organisms: the evolving codes of nomenclature. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 611-622.	4.0	48
70	Towards a working list of all known plant species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 681-687.	4.0	43
71	Biodiversity: Where's Hot and Where's Not. Conservation Biology, 2003, 17, 1442-1448.	4.7	159
72	Fruitâ€Set Induced Changes in the Sex of Flowers in Caesalpinia calycina (Leguminosae). Plant Biology, 1, 665-669.	3.8	21

#	Article	IF	CITATIONS
73	(1402â€1403) Two proposals concerning Eugenia nitida (Myrtaceae). Taxon, 1999, 48, 179-180.	0.7	O
74	Plant names for the 21st century: the International Plant Names Index, a distributed data source of general accessibility. Taxon, 1999, 48, 317-324.	0.7	23
75	(1420) Proposal to conserve the name Vellozia Candida (Velloziaceae) with a conserved type. Taxon, 1999, 48, 581-582.	0.7	3
76	(85) Proposal to permit conservation of any name. Taxon, 1998, 47, 893-894.	0.7	0
77	A Survey of the Reproductive Biology of the Myrtoideae (Myrtaceae). Annals of the Missouri Botanical Garden, 1996, 83, 480.	1.3	98
78	Wood Anatomy of Four Myrtaceae Genera in the Subtribe Myrciinae from South America. IAWA Journal, 1995, 16, 87-95.	2.7	8
79	Floristics and Biogeography of a Rain Forest in the Venezuelan Andes. Journal of Biogeography, 1994, 21, 421.	3.0	103
80	Notes on the Myrtaceae of the Pico das Almas, Bahia, Brazil. Kew Bulletin, 1994, 49, 321.	0.9	3
81	Flora of Australia Vol. 19, Myrtaceae: Eucalyptus, Angophora. Kew Bulletin, 1990, 45, 210.	0.9	0
82	Heterostyly and gene-flow in Menyanthes trifoliata L. (Menyanthaceae). Botanical Journal of the Linnean Society, 1989, 100, 337-354.	1.6	14
83	Addressing Uncertainties in Machine Learning Predictions of Conservation Status. Biodiversity Information Science and Standards, 0, 3, .	0.0	2
84	Mudanças recentes e propostas na nomenclatura botânica: implicaçÃμes para a botânica sistemática no Brasil. Revista Brasileira De Botanica, 0, 22, 231-235.	1.3	0