
Jaideep Mathur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6609531/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The ER Is a Common Mediator for the Behavior and Interactions of Other Organelles. Frontiers in Plant Science, 2022, 13, 846970.	3.6	8
2	Organelle extensions in plant cells. Plant Physiology, 2021, 185, 593-607.	4.8	14
3	Review: Morphology, behaviour and interactions of organelles. Plant Science, 2020, 301, 110662.	3.6	6
4	Pavement cell chloroplast behaviour and interactions with other organelles in <i>Arabidopsis thaliana</i> . Journal of Cell Science, 2018, 131, .	2.0	52
5	Evolving Views on Plastid Pleomorphy. Plant Cell Monographs, 2018, , 185-204.	0.4	0
6	Novel fluorochromes label tonoplast in living plant cells and reveal changes in vacuolar organization after treatment with protein phosphatase inhibitors. Protoplasma, 2018, 255, 829-839.	2.1	14
7	Peroxisome Mitochondria Inter-relations in Plants. Sub-Cellular Biochemistry, 2018, 89, 417-433.	2.4	9
8	Plastid Envelope-Localized Proteins Exhibit a Stochastic Spatiotemporal Relationship to Stromules. Frontiers in Plant Science, 2018, 9, 754.	3.6	6
9	High Light Intensity Leads to Increased Peroxule-Mitochondria Interactions in Plants. Frontiers in Cell and Developmental Biology, 2016, 4, 6.	3.7	50
10	Photoâ€convertible fluorescent proteins as tools for fresh insights on subcellular interactions in plants. Journal of Microscopy, 2016, 263, 148-157.	1.8	15
11	AtMic60 Is Involved in Plant Mitochondria Lipid Trafficking and Is Part of a Large Complex. Current Biology, 2016, 26, 627-639.	3.9	81
12	Epidermal Pavement Cells of Arabidopsis Have Chloroplasts. Plant Physiology, 2016, 171, 723-6.	4.8	49
13	Large Cellular Inclusions Accumulate in Arabidopsis Roots Exposed to Low-Sulfur Conditions. Plant Physiology, 2015, 168, 1573-1589.	4.8	7
14	Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics. Frontiers in Plant Science, 2015, 6, 783.	3.6	80
15	On the relationship between endoreduplication and collet hair initiation and tip growth, as determined using six Arabidopsis thaliana root-hair mutants. Journal of Experimental Botany, 2015, 66, 3285-3295.	4.8	16
16	The myth of interconnected plastids and related phenomena. Protoplasma, 2015, 252, 359-371.	2.1	45
17	Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. Frontiers in Plant Science, 2015, 6, 1253.	3.6	32
18	Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays. BMC Plant Biology, 2014, 14, 127.	3.6	31

JAIDEEP MATHUR

#	Article	IF	CITATIONS
19	Photo-Convertible Reporters for Selective Visualization of Subcellular Events and Interactions. Plant Cell Monographs, 2014, , 431-453.	0.4	0
20	Live Imaging of Peroxisomes and Peroxules in Plants. , 2014, , 233-253.		2
21	Simultaneous live-imaging of peroxisomes and the ER in plant cells suggests contiguity but no luminal continuity between the two organelles. Frontiers in Physiology, 2013, 4, 196.	2.8	37
22	Fluorescent Protein Flow within Stromules. Plant Cell, 2013, 25, 2771-2772.	6.6	12
23	Synchronously developing collet hairs in Arabidopsis thaliana provide an easily accessible system for studying nuclear movement and endoreduplication. Journal of Experimental Botany, 2012, 63, 4165-4178.	4.8	19
24	New insights on stromules: Stroma filled tubules extended by independent plastids. Plant Signaling and Behavior, 2012, 7, 1132-1137.	2.4	21
25	Green-to-Red Photoconvertible mEosFP-Aided Live Imaging in Plants. Methods in Enzymology, 2012, 504, 163-181.	1.0	18
26	Color Recovery after Photoconversion of H2B::mEosFP Allows Detection of Increased Nuclear DNA Content in Developing Plant Cells Â. Plant Physiology, 2012, 158, 95-106.	4.8	17
27	Differential Coloring Reveals That Plastids Do Not Form Networks for Exchanging Macromolecules. Plant Cell, 2012, 24, 1465-1477.	6.6	84
28	Organelle Extensions in Plant Cells ^F . Journal of Integrative Plant Biology, 2012, 54, 851-867.	8.5	53
29	Plastid Stromule Branching Coincides with Contiguous Endoplasmic Reticulum Dynamics Â. Plant Physiology, 2011, 155, 1667-1677.	4.8	138
30	Correlated behavior implicates stromules in increasing the interactive surface between plastids and ER tubules. Plant Signaling and Behavior, 2011, 6, 715-718.	2.4	43
31	mEosFP-Based Green-to-Red Photoconvertible Subcellular Probes for Plants Â. Plant Physiology, 2010, 154, 1573-1587.	4.8	55
32	Rapid peroxisomal responses to ROS suggest an alternative mechanistic model for post-biogenesis peroxisomal life cycle in plants. Plant Signaling and Behavior, 2009, 4, 787-789.	2.4	7
33	Peroxule extension over ERâ€defined paths constitutes a rapid subcellular response to hydroxyl stress. Plant Journal, 2009, 59, 231-242.	5.7	126
34	Signaling to the Actin Cytoskeleton During Cell Morphogenesis and Patterning. Signaling and Communication in Plants, 2009, , 135-153.	0.7	3
35	Visualizing the actin cytoskeleton in living plant cells using a photo-convertible mEos::FABD-mTn fluorescent fusion protein. Plant Methods, 2008, 4, 21.	4.3	21
36	The illuminated plant cell. Trends in Plant Science, 2007, 12, 506-513.	8.8	51

JAIDEEP MATHUR

#	Article	IF	CITATIONS
37	Illuminating subcellular structures and dynamics in plants: a fluorescent protein toolboxThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology Canadian Journal of Botany, 2006, 84, 515-522.	1.1	10
38	Local interactions shape plant cells. Current Opinion in Cell Biology, 2006, 18, 40-46.	5.4	54
39	Trichome cell morphogenesis in Arabidopsis: a continuum of cellular decisionsThis review is one of a selection of papers published in the Special Issue on Plant Cell Biology Canadian Journal of Botany, 2006, 84, 604-612.	1.1	12
40	Actin-based motility of endosomes is linked to the polar tip growth of root hairs. European Journal of Cell Biology, 2005, 84, 609-621.	3.6	170
41	The ARP2/3 complex: giving plant cells a leading edge. BioEssays, 2005, 27, 377-387.	2.5	74
42	Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biology, 2005, 3, 11.	3.8	105
43	Conservation of boundary extension mechanisms between plants and animals. Journal of Cell Biology, 2005, 168, 679-682.	5.2	11
44	Actin Control Over Microtubules Suggested by DISTORTED2 Encoding the Arabidopsis ARPC2 Subunit Homolog. Plant and Cell Physiology, 2004, 45, 813-822.	3.1	74
45	Cell shape development in plants. Trends in Plant Science, 2004, 9, 583-590.	8.8	101
46	A Novel Localization Pattern for an EB1-like Protein Links Microtubule Dynamics to Endomembrane Organization. Current Biology, 2003, 13, 1991-1997.	3.9	127
47	Arabidopsis CROOKEDencodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development (Cambridge), 2003, 130, 3137-3146.	2.5	188
48	Mutations in Actin-Related Proteins 2 and 3 Affect Cell Shape Development in Arabidopsis. Plant Cell, 2003, 15, 1632-1645.	6.6	250
49	The Arabidopsis STICHEL Gene Is a Regulator of Trichome Branch Number and Encodes a Novel Protein. Plant Physiology, 2003, 131, 643-655.	4.8	63
50	The Arabidopsis TUBULIN-FOLDING COFACTOR A Gene Is Involved in the Control of the $\hat{1}\pm/\hat{1}^2$ -Tubulin Monomer Balance. Plant Cell, 2002, 14, 2265-2276.	6.6	71
51	Simultaneous Visualization of Peroxisomes and Cytoskeletal Elements Reveals Actin and Not Microtubule-Based Peroxisome Motility in Plants. Plant Physiology, 2002, 128, 1031-1045.	4.8	187
52	Functional Analysis of the Tubulin-Folding Cofactor C in Arabidopsis thaliana. Current Biology, 2002, 12, 1519-1523.	3.9	49
53	Microtubules and Microfilaments in Cell Morphogenesis in Higher Plants. Current Biology, 2002, 12, R669-R676.	3.9	103
54	Microtubule Stabilization Leads to Growth Reorientation in Arabidopsis Trichomes. Plant Cell, 2000, 12, 465-477.	6.6	223

#	Article	IF	CITATIONS
55	Root Hair Formation: F-Actin-Dependent Tip Growth Is Initiated by Local Assembly of Profilin-Supported F-Actin Meshworks Accumulated within Expansin-Enriched Bulges. Developmental Biology, 2000, 227, 618-632.	2.0	331