J M Diederik Kruijssen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6608494/publications.pdf

Version: 2024-02-01

212 papers

11,359 citations

18482 62 h-index 93 g-index

214 all docs

214 docs citations

times ranked

214

4570 citing authors

#	Article	IF	CITATIONS
1	Exploring the link between star and planet formation with Ariel. Experimental Astronomy, 2022, 53, 225-278.	3.7	18
2	PHANGS–MUSE: The H II region luminosity function of local star-forming galaxies. Astronomy and Astrophysics, 2022, 658, A188.	5.1	34
3	The emergence of dark matter-deficient ultra-diffuse galaxies driven by scatter in the stellar mass–halo mass relation and feedback from globular clusters. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3356-3378.	4.4	18
4	A $2\hat{a}\in$ "3 mm high-resolution molecular line survey towards the centre of the nearby spiral galaxy NGC 6946. Astronomy and Astrophysics, 2022, 659, A173.	5.1	14
5	Planetary nebula luminosity function distances for 19 galaxies observed by PHANGS–MUSE. Monthly Notices of the Royal Astronomical Society, 2022, 511, 6087-6109.	4.4	15
6	The PHANGS-MUSE survey. Astronomy and Astrophysics, 2022, 659, A191.	5.1	96
7	The physics governing the upper truncation mass of the globular cluster mass function. Monthly Notices of the Royal Astronomical Society, 2022, 510, 6190-6200.	4.4	4
8	The PHANGS-HST Survey: Physics at High Angular Resolution in Nearby Galaxies with the Hubble Space Telescope. Astrophysical Journal, Supplement Series, 2022, 258, 10.	7.7	58
9	A tale of two DIGs: The relative role of H†II regions and low-mass hot evolved stars in powering the diffuse ionised gas (DIG) in PHANGS–MUSE galaxies. Astronomy and Astrophysics, 2022, 659, A26.	5.1	51
10	Molecular Gas Properties and CO-to-H ₂ Conversion Factors in the Central Kiloparsec of NGC 3351. Astrophysical Journal, 2022, 925, 72.	4.5	20
11	Uncertainties in supernova input rates drive qualitative differences in simulations of galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2022, 512, 199-215.	4.4	16
12	The Gas–Star Formation Cycle in Nearby Star-forming Galaxies. II. Resolved Distributions of CO and Hα Emission for 49 PHANGS Galaxies. Astrophysical Journal, 2022, 927, 9.	4.5	19
13	Low-J CO Line Ratios from Single-dish CO Mapping Surveys and PHANGS-ALMA. Astrophysical Journal, 2022, 927, 149.	4.5	46
14	NGC 5846-UDG1: A Galaxy Formed Mostly by Star Formation in Massive, Extremely Dense Clumps of Gas. Astrophysical Journal Letters, 2022, 927, L28.	8.3	23
15	WISDOM Project $\hat{a} \in X$. The morphology of the molecular ISM in galaxy centres and its dependence on galaxy structure. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1522-1540.	4.4	17
16	Complex Modulation of Rapidly Rotating Young M Dwarfs: Adding Pieces to the Puzzle. Astronomical Journal, 2022, 163, 144.	4.7	12
17	Radial distributions of globular clusters trace their host dark matter halo: insights from the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3925-3945.	4.4	13
18	A trail of dark-matter-free galaxies from a bullet-dwarf collision. Nature, 2022, 605, 435-439.	27.8	32

#	Article	IF	CITATIONS
19	Linking stellar populations to H II regions across nearby galaxies. Astronomy and Astrophysics, 2022, 662, L6.	5.1	11
20	The initial conditions for young massive cluster formation in the Galactic Centre: convergence of large-scale gas flows. Monthly Notices of the Royal Astronomical Society, 2022, 514, 578-595.	4.4	5
21	Empirically motivated early feedback: momentum input by stellar feedback in galaxy simulations inferred through observations. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5355-5374.	4.4	11
22	Age determination of galaxy merger remnant stars using asteroseismology. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2527-2544.	4.4	12
23	WISDOM project – XI. Star formation efficiency in the bulge of the AGN-host Galaxy NGCÂ3169 with SITELLE and ALMA. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5035-5055.	4.4	7
24	Molecular Cloud Populations in the Context of Their Host Galaxy Environments: A Multiwavelength Perspective. Astronomical Journal, 2022, 164, 43.	4.7	31
25	Introducing EMP- <i>Pathfinder</i> : modelling the simultaneous formation and evolution of stellar clusters in their host galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3144-3180.	4.4	15
26	Distances to PHANGS galaxies: New tip of the red giant branch measurements and adopted distances. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3621-3639.	4.4	106
27	Star cluster classification in the PHANGS– <i>HST</i> survey: Comparison between human and machine learning approaches. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5294-5317.	4.4	28
28	What to expect when using globular clusters as tracers of the total mass distribution in Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2828-2844.	4.4	6
29	The kinematics of globular cluster populations in the E-MOSAICS simulations and their implications for the assembly history of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2021, 503, 31-58.	4.4	22
30	ALMA Observations of Massive Clouds in the Central Molecular Zone: Ubiquitous Protostellar Outflows. Astrophysical Journal, 2021, 909, 177.	4.5	14
31	On the duration of the embedded phase of star formation. Monthly Notices of the Royal Astronomical Society, 2021, 504, 487-509.	4.4	61
32	Orbital Clustering Identifies the Origins of Galactic Stellar Streams. Astrophysical Journal Letters, 2021, 909, L26.	8.3	51
33	New constraints on the 12CO(2–1)/(1–0) line ratio across nearby disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3221-3245.	4.4	71
34	Applying the Tremaine–Weinberg Method to Nearby Galaxies: Stellar-mass-based Pattern Speeds and Comparisons with ISM Kinematics. Astronomical Journal, 2021, 161, 185.	4.7	23
35	When the Peas Jump around the Pod: How Stellar Clustering Affects the Observed Correlations between Planet Properties in Multiplanet Systems. Astrophysical Journal Letters, 2021, 910, L19.	8.3	11
36	The Impact of Stellar Clustering on the Observed Multiplicity and Orbital Periods of Planetary Systems. Astrophysical Journal Letters, 2021, 911, L16.	8.3	12

#	Article	IF	Citations
37	A scaling relation for the molecular cloud lifetime in Milky Way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1678-1698.	4.4	13
38	Momentum feedback from marginally resolved H <scp>ii</scp> regions in isolated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3470-3491.	4.4	27
39	The centres of M83 and the Milky Way: opposite extremes of a common star formation cycle. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4310-4337.	4.4	16
40	Star formation scaling relations at \hat{a}^4 100 pc from PHANGS: Impact of completeness and spatial scale. Astronomy and Astrophysics, 2021, 650, A134.	5.1	50
41	A Tip of the Red Giant Branch Distance of 22.1 ± 1.2 Mpc to the Dark Matter Deficient Galaxy NGC 1052–DF2 from 40 Orbits of Hubble Space Telescope Imaging. Astrophysical Journal Letters, 2021, 914, L12.	8.3	35
42	The Organization of Cloud-scale Gas Density Structure: High-resolution CO versus 3.6 μm Brightness Contrasts in Nearby Galaxies. Astrophysical Journal, 2021, 913, 113.	4.5	10
43	Dense molecular gas properties on 100Âpc scales across the disc of NGCÂ3627. Monthly Notices of the Royal Astronomical Society, 2021, 506, 963-988.	4.4	24
44	Constraining the formation of NGC 1052-DF2 from its unusual globular cluster population. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4841-4854.	4.4	17
45	A model for the formation of stellar associations and clusters from giant molecular clouds. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3239-3258.	4.4	48
46	Modelling of ionizing feedback with smoothed particle hydrodynamics and Monte Carlo radiative transfer on a Voronoi grid. Monthly Notices of the Royal Astronomical Society, 2021, 507, 858-878.	4.4	3
47	PHANGS–ALMA Data Processing and Pipeline. Astrophysical Journal, Supplement Series, 2021, 255, 19.	7.7	79
48	The survival of globular clusters in a cuspy Fornax. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2339-2353.	4.4	13
49	On the initial mass–radius relation of stellar clusters. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5492-5506.	4.4	8
50	Stellar structures, molecular gas, and star formation across the PHANGS sample of nearby galaxies. Astronomy and Astrophysics, 2021, 656, A133.	5.1	53
51	Frequency and nature of central molecular outflows in nearby star-forming disk galaxies. Astronomy and Astrophysics, 2021, 653, A172.	5.1	19
52	The impact of pre-supernova feedback and its dependence on environment. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5425-5448.	4.4	21
53	ALMA resolves giant molecular clouds in a tidal dwarf galaxy. Astronomy and Astrophysics, 2021, 645, A97.	5.1	10
54	PHANGS– <i>HST</i> : star cluster spectral energy distribution fitting with <scp>cigale</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 502, 1366-1385.	4.4	33

#	Article	IF	Citations
55	Giant molecular cloud catalogues for PHANGS-ALMA: methods and initial results. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1218-1245.	4.4	7 5
56	The 2D metallicity distribution and mixing scales of nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1303-1322.	4.4	22
57	Comparing the pre-SNe feedback and environmental pressures for 6000 H <scp>ii</scp> regions across 19 nearby spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5362-5389.	4.4	27
58	Pre-supernova feedback mechanisms drive the destruction of molecular clouds in nearby star-forming disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 272-288.	4.4	65
59	ALMA observations of the Extended Green Object G19.01â^'0.03 â€" I. A Keplerian disc in a massive protostellar system. Monthly Notices of the Royal Astronomical Society, 2021, 509, 748-762.	4.4	12
60	PHANGS–ALMA: Arcsecond CO(2–1) Imaging of Nearby Star-forming Galaxies. Astrophysical Journal, Supplement Series, 2021, 257, 43.	7.7	161
61	Bright, relatively isolated star clusters in PHANGS– <i>HST</i> galaxies: Aperture corrections, quantitative morphologies, and comparison with synthetic stellar population models. Monthly Notices of the Royal Astronomical Society, 2021, 510, 32-53.	4.4	16
62	PHANGS-HST: new methods for star cluster identification in nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4094-4127.	4.4	25
63	A wind-blown bubble in the Central Molecular Zone cloud G0.253+0.016. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4758-4774.	4.4	7
64	Prevalent externally driven protoplanetary disc dispersal as a function of the galactic environment. Monthly Notices of the Royal Astronomical Society, 2020, 491, 903-922.	4.4	39
65	The lifecycle of molecular clouds in nearby star-forming disc galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2872-2909.	4.4	178
66	Measuring the mixing scale of the ISM within nearby spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 193-209.	4.4	44
67	Stellar clustering shapes the architecture of planetary systems. Nature, 2020, 586, 528-532.	27.8	51
68	Testing viscous disc theory using the balance between stellar accretion and external photoevaporation of protoplanetary discs. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 497, L40-L45.	3.3	16
69	Heart of darkness: the influence of galactic dynamics on quenching star formation in galaxy spheroids. Monthly Notices of the Royal Astronomical Society, 2020, 495, 199-223.	4.4	62
70	The role of galactic dynamics in shaping the physical properties of giant molecular clouds in Milky Way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 385-429.	4.4	35
71	The CO-dark molecular gas mass in 30 Doradus. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5279-5292.	4.4	24
72	Predicting accreted satellite galaxy masses and accretion redshifts based on globular cluster orbits in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4863-4875.	4.4	25

#	Article	IF	CITATIONS
73	Kraken reveals itself – the merger history of the Milky Way reconstructed with the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2472-2491.	4.4	147
74	An uncertainty principle for star formation – V. The influence of dust extinction on star formation rate tracer lifetimes and the inferred molecular cloud lifecycle. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5076-5089.	4.4	6
75	An uncertainty principle for star formation – III. The characteristic emission time-scales of star formation rate tracers. Monthly Notices of the Royal Astronomical Society, 2020, 498, 235-257.	4.4	22
76	AlFoCS + Fornax3D: resolved star formation in the Fornax cluster with ALMA and MUSE. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2155-2182.	4.4	26
77	Towards a multitracer timeline of star formation in the LMC – I. Deriving the lifetimes of H i clouds. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2286-2301.	4.4	13
78	Star cluster formation in the most extreme environments: insights from the HiPEEC survey. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3267-3294.	4.4	49
79	The globular cluster system mass–halo mass relation in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1050-1061.	4.4	33
80	Which feedback mechanisms dominate in the high-pressure environment of the central molecular zone?. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4906-4923.	4.4	47
81	Deep transfer learning for star cluster classification: I. application to the PHANGS–⟨i⟩HST⟨/i⟩ survey. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3178-3193.	4.4	38
82	The Physics of Star Cluster Formation and Evolution. Space Science Reviews, 2020, 216, 1.	8.1	65
83	Physical Processes in Star Formation. Space Science Reviews, 2020, 216, 1.	8.1	43
84	A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces. II. The Bottleneck to Collapse Set by Cloud–Environment Decoupling. Astrophysical Journal, 2020, 892, 73.	4. 5	27
85	The Origin of the Stellar Mass Distribution and Multiplicity. Space Science Reviews, 2020, 216, 1.	8.1	29
86	Star Clusters Near and Far. Space Science Reviews, 2020, 216, 1.	8.1	82
87	The Molecular Cloud Lifecycle. Space Science Reviews, 2020, 216, 50.	8.1	77
88	From Diffuse Gas to Dense Molecular Cloud Cores. Space Science Reviews, 2020, 216, 1.	8.1	38
89	Where did the globular clusters of the Milky Way form? Insights from the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4248-4267.	4.4	27
90	ALMA Observations of Massive Clouds in the Central Molecular Zone: Jeans Fragmentation and Cluster Formation. Astrophysical Journal Letters, 2020, 894, L14.	8.3	20

#	Article	IF	Citations
91	Impact of Low-Energy Cosmic Rays on Star Formation. Space Science Reviews, 2020, 216, 1.	8.1	67
92	When Gas Dynamics Decouples from Galactic Rotation: Characterizing ISM Circulation in Disk Galaxies. Astrophysical Journal, 2020, 892, 94.	4.5	7
93	The headlight cloud in NGC 628: An extreme giant molecular cloud in a typical galaxy disk. Astronomy and Astrophysics, 2020, 634, A121.	5.1	32
94	Ubiquitous velocity fluctuations throughout the molecular interstellar medium. Nature Astronomy, 2020, 4, 1064-1071.	10.1	38
95	The mass fraction of halo stars contributed by the disruption of globular clusters in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3422-3428.	4.4	21
96	High-Energy Particles and Radiation in Star-Forming Regions. Space Science Reviews, 2020, 216, 1.	8.1	56
97	Entropy-driven winds: Outflows and fountains lifted gently by buoyancy. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2149-2170.	4.4	20
98	The [î±/Fe]–[Fe/H] relation in the E-MOSAICS simulations: its connection to the birth place of globular clusters and the fraction of globular cluster field stars in the bulge. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4012-4022.	4.4	28
99	Dynamical Equilibrium in the Molecular ISM in 28 Nearby Star-forming Galaxies. Astrophysical Journal, 2020, 892, 148.	4.5	88
100	The Phoenix stellar stream rose from the ashes of an ancient star cluster. Nature, 2020, 583, 687-688.	27.8	2
101	Not all stars form in clusters – Gaia-DR2 uncovers the origin of OB associations. Monthly Notices of the Royal Astronomical Society, 2020, 495, 663-685.	4.4	53
102	The elephant in the bathtub: when the physics of star formation regulate the baryon cycle of galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2000-2011.	4.4	10
103	Linking globular cluster formation at low and high redshift through the age–metallicity relation in E-MOSAICS. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4768-4778.	4.4	13
104	Stellar Feedback and Resolved Stellar IFU Spectroscopy in the Nearby Spiral Galaxy NGC 300. Astrophysical Journal, 2020, 891, 25.	4.5	35
105	PHANGS CO Kinematics: Disk Orientations and Rotation Curves at 150 pc Resolution. Astrophysical Journal, 2020, 897, 122.	4.5	77
106	CMZoom: Survey Overview and First Data Release. Astrophysical Journal, Supplement Series, 2020, 249, 35.	7.7	27
107	CMZoom. II. Catalog of Compact Submillimeter Dust Continuum Sources in the Milky Way's Central Molecular Zone. Astrophysical Journal, Supplement Series, 2020, 251, 14.	7.7	16
108	Molecular Gas Properties on Cloud Scales across the Local Star-forming Galaxy Population. Astrophysical Journal Letters, 2020, 901, L8.	8.3	85

#	Article	IF	Citations
109	Bridging the Planet Radius Valley: Stellar Clustering as a Key Driver for Turning Sub-Neptunes into Super-Earths. Astrophysical Journal Letters, 2020, 905, L18.	8.3	19
110	The evolution of the UV luminosity function of globular clusters in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4550-4564.	4.4	15
111	How Galactic Environment Affects the Dynamical State of Molecular Clouds and Their Star Formation Efficiency. Astrophysical Journal, 2019, 883, 2.	4.5	63
112	Young star cluster populations in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1714-1733.	4.4	31
113	A Census of Early-phase High-mass Star Formation in the Central Molecular Zone. Astrophysical Journal, Supplement Series, 2019, 244, 35.	7.7	24
114	A model for the minimum mass of bound stellar clusters and its dependence on the galactic environment. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3972-3994.	4.4	21
115	An uncertainty principle for star formation – IV. On the nature and filtering of diffuse emission. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2800-2824.	4.4	17
116	Feedback from massive stars at low metallicities: MUSE observations of N44 and N180 in the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5263-5288.	4.4	53
117	Formation histories of stars, clusters, and globular clusters in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5838-5852.	4.4	56
118	A systematic analysis of star cluster disruption by tidal shocks – I.ÂControlled N-body simulations and a new theoretical model. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5879-5894.	4.4	15
119	The E-MOSAICS project: tracing galaxy formation and assembly with the age–metallicity distribution of globular clusters. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3134-3179.	4.4	95
120	A fundamental test for stellar feedback recipes in galaxy simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1717-1728.	4.4	40
121	Fast and inefficient star formation due to short-lived molecular clouds and rapid feedback. Nature, 2019, 569, 519-522.	27.8	178
122	The dynamical evolution of molecular clouds near the Galactic Centre – III. Tidally induced star formation in protocluster clouds. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3307-3326.	4.4	31
123	The minimum metallicity of globular clusters and its physical origin – implications for the galaxy mass–metallicity relation and observations of proto-globular clusters at high redshift. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 486, L20-L25.	3.3	37
124	Young massive star cluster formation in the Galactic Centre is driven by global gravitational collapse of high-mass molecular clouds. Monthly Notices of the Royal Astronomical Society, 2019, 486, 283-303.	4.4	29
125	Chaos and variance in galaxy formation. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2244-2261.	4.4	63
126	â€The Brick' is not a <i>brick</i> : a comprehensive study of the structure and dynamics of the central molecular zone cloud G0.253+0.016. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2457-2485.	4.4	57

#	Article	IF	CITATIONS
127	Optical IFU spectroscopy of a bipolar microquasar jet in NGCÂ300. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3476-3485.	4.4	3
128	Dense gas is not enough: environmental variations in the star formation efficiency of dense molecular gas at 100 pc scales in M 51. Astronomy and Astrophysics, 2019, 625, A19.	5.1	47
129	Fossil stellar streams and their globular cluster populations in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2795-2806.	4.4	35
130	Star Formation Rates of Massive Molecular Clouds in the Central Molecular Zone. Astrophysical Journal, 2019, 872, 171.	4.5	32
131	The dynamical evolution of molecular clouds near the Galactic Centre – II. Spatial structure and kinematics of simulated clouds. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5734-5754.	4.4	68
132	Mapping Metallicity Variations across Nearby Galaxy Disks. Astrophysical Journal, 2019, 887, 80.	4.5	103
133	The Gas–Star Formation Cycle in Nearby Star-forming Galaxies. I. Assessment of Multi-scale Variations. Astrophysical Journal, 2019, 887, 49.	4.5	57
134	The formation and assembly history of the Milky Way revealed by its globular cluster population. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3180-3202.	4.4	232
135	Mapping Electron Temperature Variations across a Spiral Arm in NGC 1672. Astrophysical Journal Letters, 2019, 885, L31.	8.3	17
136	An Enigmatic Population of Luminous Globular Clusters in a Galaxy Lacking Dark Matter. Astrophysical Journal Letters, 2018, 856, L30.	8.3	74
137	Not all stars form in clusters – measuring the kinematics of OB associations with Gaia. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5659-5676.	4.4	58
138	Star formation in a high-pressure environment: an SMA view of the Galactic Centre dust ridge. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2373-2388.	4.4	38
139	A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces. I. Cloud-scale Gas Motions. Astrophysical Journal, 2018, 854, 100.	4.5	67
140	A general theory for the lifetimes of giant molecular clouds under the influence of galactic dynamics. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3688-3715.	4.4	60
141	Distributed Star Formation throughout the Galactic Center Cloud Sgr B2. Astrophysical Journal, 2018, 853, 171.	4.5	74
142	The origin of the †blue tilt†of globular cluster populations in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3279-3301.	4.4	33
143	The implications of clustered star formation for (proto)planetary systems and habitability. Proceedings of the International Astronomical Union, 2018, 14, 61-65.	0.0	1
144	Spatially Resolved ¹² CO(2–1)/ ¹² CO(1–0) in the Starburst Galaxy NGC 253: Assessing Optical Depth to Constrain the Molecular Mass Outflow Rate. Astrophysical Journal, 2018, 867, 111.	4.5	24

#	Article	IF	Citations
145	Do Spectroscopic Dense Gas Fractions Track Molecular Cloud Surface Densities?. Astrophysical Journal Letters, 2018, 868, L38.	8.3	27
146	The Dragonfly Nearby Galaxies Survey. V. HST/ACS Observations of 23 Low Surface Brightness Objects in the Fields of NGC 1052, NGC 1084, M96, and NGC 4258. Astrophysical Journal, 2018, 868, 96.	4.5	66
147	The young star cluster population of M51 with LEGUS \hat{a} \in II. Testing environmental dependences. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1683-1707.	4.4	52
148	Dynamical cluster disruption and its implications for multiple population models in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2851-2857.	4.4	36
149	A High Cluster Formation Efficiency in the Sagittarius B2 Complex. Astrophysical Journal Letters, 2018, 864, L17.	8.3	32
150	On the physical mechanisms governing the cloud lifecycle in the Central Molecular Zone of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3380-3385.	4.4	28
151	Cloud-scale Molecular Gas Properties in 15 Nearby Galaxies. Astrophysical Journal, 2018, 860, 172.	4.5	182
152	Globular cluster formation and evolution in the context of cosmological galaxy assembly: open questions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170616.	2.1	102
153	An uncertainty principle for star formation – II. A new method for characterizing the cloud-scale physics of star formation and feedback across cosmic history. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1866-1952.	4.4	71
154	Constraints on the Distribution of Gas and Young Stars in the Galactic Centre in the Context of Interpreting Gamma Ray Emission Features. Galaxies, 2018, 6, 55.	3.0	5
155	Star Formation Efficiency per Free-fall Time in nearby Galaxies. Astrophysical Journal Letters, 2018, 861, L18.	8.3	97
156	A 50 pc Scale View of Star Formation Efficiency across NGC 628. Astrophysical Journal Letters, 2018, 863, L21.	8.3	78
157	The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4309-4346.	4.4	173
158	The Maybe Stream: A Possible Cold Stellar Stream in the Ultra-diffuse Galaxy NGC1052-DF2. Research Notes of the AAS, 2018, 2, 16.	0.7	27
159	A dynamical model for gas flows, star formation and nuclear winds in galactic centres. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1213-1233.	4.4	79
160	Physical Properties of Molecular Clouds at 2 pc Resolution in the Low-metallicity Dwarf Galaxy NGC 6822 and the Milky Way. Astrophysical Journal, 2017, 835, 278.	4.5	69
161	A REVISED PLANETARY NEBULA LUMINOSITY FUNCTION DISTANCE TO NGC 628 USING MUSE. Astrophysical Journal, 2017, 834, 174.	4.5	42
162	The Molecular Gas Environment in the 20 km s ^{\hat{a}^{1}(sup> Cloud in the Central Molecular Zone. Astrophysical Journal, 2017, 839, 1.}	4.5	34

#	Article	IF	Citations
163	Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions. Astrophysical Journal, 2017, 835, 217.	4.5	62
164	The Survey of Water and Ammonia in the Galactic Center (SWAG): Molecular Cloud Evolution in the Central Molecular Zone. Astrophysical Journal, 2017, 850, 77.	4.5	71
165	Star formation rates and efficiencies in the Galactic Centre. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2263-2285.	4.4	129
166	A unified model for the maximum mass scales of molecular clouds, stellar clusters and high-redshift clumps. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1282-1298.	4.4	78
167	Simultaneous low- and high-mass star formation in a massive protocluster: ALMA observations of G11.92â^'0.61â~ Monthly Notices of the Royal Astronomical Society, 2017, 468, 3694-3708.	4.4	42
168	A tight relation between the age distributions of stellar clusters and the properties of the interstellar medium in the host galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 470, 1421-1435.	4.4	19
169	Cloud-scale ISM Structure and Star Formation in M51. Astrophysical Journal, 2017, 846, 71.	4.5	119
170	The varying mass distribution of molecular clouds across M83. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1769-1781.	4.4	55
171	The difference in metallicity distribution functions of halo stars and globular clusters as a function of galaxy type. Astronomy and Astrophysics, 2017, 606, A85.	5.1	32
172	Towards a multi-scale understanding of the gas-star formation cycle in the Central Molecular Zone. Proceedings of the International Astronomical Union, 2016, 11, 64-74.	0.0	0
173	Seeding the Galactic Centre gas stream: gravitational instabilities set the initial conditions for the formation of protocluster clouds. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 463, L122-L126.	3.3	49
174	Dense gas in the Galactic central molecular zone is warm and heated by turbulence. Astronomy and Astrophysics, 2016, 586, A50.	5.1	152
175	A PORTRAIT OF COLD GAS IN GALAXIES AT 60 pc RESOLUTION AND A SIMPLE METHOD TO TEST HYPOTHESES THAT LINK SMALL-SCALE ISM STRUCTURE TO GALAXY-SCALE PROCESSES. Astrophysical Journal, 2016, 831, 16.	4.5	92
176	Comparing young massive clusters and their progenitor clouds in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4536-4545.	4.4	42
177	THE LINK BETWEEN TURBULENCE, MAGNETIC FIELDS, FILAMENTS, AND STAR FORMATION IN THE CENTRAL MOLECULAR ZONE CLOUD G0.253+0.016. Astrophysical Journal, 2016, 832, 143.	4.5	134
178	Toward gas exhaustion in the W51 high-mass protoclusters. Astronomy and Astrophysics, 2016, 595, A27.	5.1	48
179	Is the escape velocity in star clusters linked to extended star formation histories? Using NGC 7252:ÂW3 as a test case. Monthly Notices of the Royal Astronomical Society, 2016, 457, 809-821.	4.4	35
180	Pitfalls when observationally characterizing the relative formation rates of stars and stellar clusters in galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L24-L28.	3.3	19

#	Article	IF	Citations
181	Molecular gas kinematics within the central 250Âpc of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2675-2702.	4.4	154
182	DEEPLY EMBEDDED PROTOSTELLAR POPULATION IN THE 20 km s $\langle \sup \rangle$ â^'1 $\langle \sup \rangle$ CLOUD OF THE CENTRAL MOLECULAR ZONE. Astrophysical Journal Letters, 2015, 814, L18.	8.3	24
183	Globular clusters as the relics of regular star formation in †normal†high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1658-1686.	4.4	248
184	Tracing the conversion of gas into stars in Young Massive Cluster Progenitors. Monthly Notices of the Royal Astronomical Society, 2015, 449, 715-725.	4.4	51
185	A dynamical model for the formation of gas rings and episodic starbursts near galactic centres. Monthly Notices of the Royal Astronomical Society, 2015, 453, 739-757.	4.4	105
186	Probing the role of the galactic environment in the formation of stellar clusters, using M83 as a test bench. Monthly Notices of the Royal Astronomical Society, 2015, 452, 246-260.	4.4	144
187	A CLUSTER IN THE MAKING: ALMA REVEALS THE INITIAL CONDITIONS FOR HIGH-MASS CLUSTER FORMATION. Astrophysical Journal, 2015, 802, 125.	4.5	89
188	The dynamical evolution of molecular clouds near the Galactic Centre $\hat{a} \in \mathbb{C}$ I. Orbital structure and evolutionary timeline. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1059-1079.	4.4	174
189	Protoplanetary disc evolution affected by star-disc interactions in young stellar clusters. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2094-2110.	4.4	67
190	COLOR-MAGNITUDE RELATIONS WITHIN GLOBULAR CLUSTER SYSTEMS OF GIANT ELLIPTICAL GALAXIES: THE EFFECTS OF GLOBULAR CLUSTER MASS LOSS AND THE STELLAR INITIAL MASS FUNCTION. Astrophysical Journal, 2014, 780, 43.	4.5	17
191	Globular cluster formation in the context of galaxy formation and evolution. Classical and Quantum Gravity, 2014, 31, 244006.	4.0	132
192	An uncertainty principle for star formation – I. Why galactic star formation relations break down below a certain spatial scale. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3239-3252.	4.4	161
193	TURBULENCE SETS THE INITIAL CONDITIONS FOR STAR FORMATION IN HIGH-PRESSURE ENVIRONMENTS. Astrophysical Journal Letters, 2014, 795, L25.	8.3	87
194	G0.253+0.016: A CENTRALLY CONDENSED, HIGH-MASS PROTOCLUSTER. Astrophysical Journal, 2014, 786, 140.	4.5	64
195	ABSORPTION FILAMENTS TOWARD THE MASSIVE CLUMP G0.253+0.016. Astrophysical Journal, 2014, 795, 28.	4.5	14
196	What controls star formation in the central 500Âpc of the Galaxy?. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3370-3391.	4.4	201
197	The Formation and Early Evolution of Young Massive Clusters. , 2014, , .		42
198	Variations in the Galactic star formation rate and density thresholds for star formation. Monthly Notices of the Royal Astronomical Society, 2013, 429, 987-1000.	4.4	254

#	Article	lF	CITATIONS
199	Candidate super star cluster progenitor gas clouds possibly triggered by close passage to Sgr A*. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 433, L15-L19.	3.3	104
200	Comparing molecular gas across cosmic time-scales: the Milky Way as both a typical spiral galaxy and a high-redshift galaxy analogue. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2598-2603.	4.4	103
201	On the fraction of star formation occurring in bound stellar clusters. Monthly Notices of the Royal Astronomical Society, 2012, 426, 3008-3040.	4.4	331
202	The dynamical state of stellar structure in star-forming regions. Monthly Notices of the Royal Astronomical Society, 2012, 419, 841-853.	4.4	144
203	The initial mass spectrum of old globular clusters in dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 420, 340-345.	4.4	20
204	Formation versus destruction: the evolution of the star cluster population in galaxy mergers. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1927-1941.	4.4	89
205	Can habitable planets form in clustered environments?. Astronomy and Astrophysics, 2012, 546, L1.	5.1	54
206	Modelling the formation and evolution of star cluster populations in galaxy simulations. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1339-1364.	4.4	148
207	The evolution of the stellar mass function in star clusters. Astronomy and Astrophysics, 2009, 507, 1409-1423.	5.1	68
208	ON THE INTERPRETATION OF THE GLOBULAR CLUSTER LUMINOSITY FUNCTION. Astrophysical Journal, 2009, 698, L158-L162.	4. 5	46
209	Dissolution is the solution: on the reduced mass-to-light ratios of Galactic globular clusters. Astronomy and Astrophysics, 2009, 500, 785-799.	5.1	74
210	The photometric evolution of star clusters and the preferential loss of low-mass bodies – with an application to globular clusters. Astronomy and Astrophysics, 2008, 490, 151-171.	5.1	37
211	Explaining the mass-to-light ratios of globular clusters. Astronomy and Astrophysics, 2008, 486, L21-L24.	5.1	35
212	The present-day globular cluster kinematics of lenticular galaxies from the E-MOSAICS simulations and their relation to the galaxy assembly histories. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	O