
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6608311/publications.pdf Version: 2024-02-01

POLELOPDE

#	Article	IF	CITATIONS
1	Vitamin D deficiency in Europe: pandemic?. American Journal of Clinical Nutrition, 2016, 103, 1033-1044.	4.7	963
2	Vitamin D and mortality: meta-analysis of individual participant data from a large consortium of cohort studies from Europe and the United States. BMJ, The, 2014, 348, g3656-g3656.	6.0	363
3	Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. Lancet Diabetes and Endocrinology,the, 2014, 2, 719-729.	11.4	319
4	Tracking of Serum 25-Hydroxyvitamin D Levels During 14 Years in a Population-based Study and During 12 Months in an Intervention Study. American Journal of Epidemiology, 2010, 171, 903-908.	3.4	293
5	Vitamin D and metabolic health with special reference to the effect of vitamin D on serum lipids. Progress in Lipid Research, 2011, 50, 303-312.	11.6	283
6	Effect of Vitamin D Supplementation on Blood Pressure. JAMA Internal Medicine, 2015, 175, 745.	5.1	272
7	Rationale and Plan for Vitamin D Food Fortification: A Review and Guidance Paper. Frontiers in Endocrinology, 2018, 9, 373.	3.5	249
8	Supplementation with cholecalciferol does not improve glycaemic control in diabetic subjects with normal serum 25-hydroxyvitamin D levels. European Journal of Nutrition, 2009, 48, 349-354.	3.9	224
9	No significant effect on bone mineral density by high doses of vitamin D3 given to overweight subjects for one year. Nutrition Journal, 2010, 9, 1.	3.4	223
10	Vitamin D and mortality: Individual participant data meta-analysis of standardized 25-hydroxyvitamin D in 26916 individuals from a European consortium. PLoS ONE, 2017, 12, e0170791.	2.5	219
11	Neuropsychological Function and Symptoms in Subjects with Subclinical Hypothyroidism and the Effect of Thyroxine Treatment. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 145-153.	3.6	206
12	Non-skeletal health effects of vitamin D supplementation: A systematic review on findings from meta-analyses summarizing trial data. PLoS ONE, 2017, 12, e0180512.	2.5	189
13	Serum 1,25-dihydroxy vitamin D is inversely associated with body mass index. European Journal of Nutrition, 2008, 47, 87-91.	3.9	168
14	Neuropsychological function in relation to serum parathyroid hormone and serum 25–hydroxyvitamin D levels. Journal of Neurology, 2006, 253, 464-470.	3.6	158
15	Vitamin D 20 000 IU per Week for Five Years Does Not Prevent Progression From Prediabetes to Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1647-1655.	3.6	146
16	Cross-sectional and longitudinal relation between serum 25-hydroxyvitamin D and body mass index: the TromsÃ, study. European Journal of Nutrition, 2010, 49, 401-407.	3.9	140
17	Serum Calcium and Cardiovascular Risk Factors and Diseases. Hypertension, 1999, 34, 484-490.	2.7	130
18	Intakes of Calcium and Vitamin D Predict Body Mass Index in the Population of Northern Norway. Journal of Nutrition, 2003, 133, 102-106.	2.9	127

#	Article	IF	CITATIONS
19	Seasonal Changes in Vitamin D-Effective UVB Availability in Europe and Associations with Population Serum 25-Hydroxyvitamin D. Nutrients, 2016, 8, 533.	4.1	127
20	Serum 25-Hydroxyvitamin D Levels Are Strongly Related to Systolic Blood Pressure But Do Not Predict Future Hypertension. Hypertension, 2010, 55, 792-798.	2.7	126
21	Calcium from dairy products, vitamin D intake, and blood pressure: the TromsÃ, study. American Journal of Clinical Nutrition, 2000, 71, 1530-1535.	4.7	121
22	No effect of supplementation with cholecalciferol on cytokines and markers of inflammation in overweight and obese subjects. Cytokine, 2010, 50, 175-180.	3.2	120
23	Polymorphisms Related to the Serum 25-Hydroxyvitamin D Level and Risk of Myocardial Infarction, Diabetes, Cancer and Mortality. The TromsÃ, Study. PLoS ONE, 2012, 7, e37295.	2.5	102
24	No Effect of High-Dose Vitamin D Supplementation on Glycemic Status or Cardiovascular Risk Factors in Subjects With Prediabetes. Diabetes Care, 2014, 37, 2123-2131.	8.6	97
25	Serum free and bio-available 25-hydroxyvitamin D correlate better with bone density than serum total 25-hydroxyvitamin D. Scandinavian Journal of Clinical and Laboratory Investigation, 2014, 74, 177-183.	1.2	95
26	Serum parathyroid hormone as a predictor of increase in systolic blood pressure in men. Journal of Hypertension, 2005, 23, 1639-1644.	0.5	86
27	Effect of smoking on the serum levels of 25-hydroxyvitamin D depends on the assay employed. European Journal of Endocrinology, 2010, 163, 339-348.	3.7	78
28	Assessing the relationship between perfluoroalkyl substances, thyroid hormones and binding proteins in pregnant women; a longitudinal mixed effects approach. Environment International, 2015, 77, 63-69.	10.0	74
29	Effects of vitamin D binding protein phenotypes and vitamin D supplementation on serum total 25(OH)D and directly measured free 25(OH)D. European Journal of Endocrinology, 2016, 174, 445-452.	3.7	72
30	Vitamin D3 increases in abdominal subcutaneous fat tissue after supplementation with vitamin D3. European Journal of Endocrinology, 2015, 172, 235-241.	3.7	63
31	Vitamin D and cognitive function: The TromsÃ, Study. Journal of the Neurological Sciences, 2015, 355, 155-161.	0.6	61
32	Vitamin D Stored in Fat Tissue During a 5-Year Intervention Affects Serum 25-Hydroxyvitamin D Levels the Following Year. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3731-3738.	3.6	56
33	Vitamin D Supplementation for Prevention of Type 2 Diabetes Mellitus: To D or Not to D?. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 3721-3733.	3.6	55
34	Serum calcium and the calcium-sensing receptor polymorphism rs17251221 in relation to coronary heart disease, type 2 diabetes, cancer and mortality: the TromsÃ, Study. European Journal of Epidemiology, 2013, 28, 569-578.	5.7	50
35	Vitamin D deficiency and lifestyle risk factors in a Norwegian adolescent population. Scandinavian Journal of Public Health, 2014, 42, 593-602.	2.3	50
36	Vitamin D and cognitive function: A Mendelian randomisation study. Scientific Reports, 2017, 7, 13230.	3.3	50

#	Article	IF	CITATIONS
37	Vitamin D and health: The need for more randomized controlled trials. Journal of Steroid Biochemistry and Molecular Biology, 2015, 148, 269-274.	2.5	49
38	Effects of vitamin D supplementation on markers for cardiovascular disease and type 2 diabetes: an individual participant data meta-analysis of randomized controlled trials. American Journal of Clinical Nutrition, 2018, 107, 1043-1053.	4.7	49
39	Serum Levels of Vitamin D and Haemostatic Factors in Healthy Subjects: The TromsÃ, Study. Acta Haematologica, 2007, 117, 91-97.	1.4	42
40	Plasma profile of microRNA after supplementation with high doses of vitamin D3 for 12 months. BMC Research Notes, 2012, 5, 245.	1.4	42
41	Vitamin D supplementation did not prevent influenza-like illness as diagnosed retrospectively by questionnaires in subjects participating in randomized clinical trials. Scandinavian Journal of Infectious Diseases, 2012, 44, 126-132.	1.5	41
42	The effects of calcium supplementation to patients with primary hyperparathyroidism and a low calcium intake. European Journal of Nutrition, 2002, 41, 258-263.	3.9	40
43	Serum 25-hydroxyvitamin D levels are inversely associated with glycated haemoglobin (HbA _{1c}). The TromsÃ, Study. Scandinavian Journal of Clinical and Laboratory Investigation, 2011, 71, 399-406.	1.2	38
44	Prevention of urinary tract infections with vitamin D supplementation 20,000 IU per week for five years. Results from an RCT including 511 subjects. Infectious Diseases, 2016, 48, 823-828.	2.8	35
45	Small and large fiber neuropathy in those with type 1 and type 2 diabetes: a 5â€year followâ€up study. Journal of the Peripheral Nervous System, 2016, 21, 15-21.	3.1	33
46	Changes in the human transcriptome upon vitamin D supplementation. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 93-99.	2.5	31
47	No improvement in depressive symptoms by vitamin D supplementation: results from a randomised controlled trial. Journal of Nutritional Science, 2018, 7, e30.	1.9	30
48	Effect of Genetically Low 25-Hydroxyvitamin D on Mortality Risk: Mendelian Randomization Analysis in 3 Large European Cohorts. Nutrients, 2019, 11, 74.	4.1	30
49	Parameters of the thrombogram are associated with serum 25-hydroxyvitamin D levels at baseline, but not affected during supplementation with vitamin D. Thrombosis Research, 2010, 125, e210-e213.	1.7	28
50	Leisure time computer use and adolescent bone health–findings from the Tromso Study, Fit Futures: a cross-sectional study. BMJ Open, 2015, 5, e006665-e006665.	1.9	28
51	Serum cholecalciferol may be a better marker of vitamin D status than 25-hydroxyvitamin D. Medical Hypotheses, 2018, 111, 61-65.	1.5	26
52	Lack of Significant Association between Intima-Media Thickness in the Carotid Artery and Serum TSH Level. The TromsÃ, Study. Thyroid, 2008, 18, 21-25.	4.5	24
53	Vitamin D supplementation does not improve CVD risk factors in vitamin D-insufficient subjects. Endocrine Connections, 2018, 7, 840-849.	1.9	24
54	Supplementation with High Doses of Vitamin D to Subjects without Vitamin D Deficiency May Have Negative Effects: Pooled Data from Four Intervention Trials in TromsÃ,. Isrn Endocrinology, 2013, 2013, 1-7.	2.0	22

#	Article	IF	CITATIONS
55	Vitamin D supplementation has no effect on cognitive performance after four months in mid-aged and older subjects. Journal of the Neurological Sciences, 2019, 396, 165-171.	0.6	22
56	RCTS are the only appropriate way to demonstrate the role of vitamin D in health. Journal of Steroid Biochemistry and Molecular Biology, 2018, 177, 10-14.	2.5	21
57	High dose vitamin D may improve lower urinary tract symptoms in postmenopausal women. Journal of Steroid Biochemistry and Molecular Biology, 2017, 173, 28-32.	2.5	20
58	Effects of vitamin D supplementation on bone turnover markers and other bone-related substances in subjects with vitamin D deficiency. Bone, 2019, 124, 7-13.	2.9	20
59	Haemodynamic effects of low and high doses of insulin during beta receptor blockade in dogs. Clinical Physiology, 1985, 5, 455-467.	0.7	18
60	Lean body mass and creatine kinase are associated with reduced inflammation in obesity. European Journal of Clinical Investigation, 2017, 47, 803-811.	3.4	17
61	The DBP Phenotype Gc-1f/Gc-1f Is Associated with Reduced Risk of Cancer. The TromsÃ, Study. PLoS ONE, 2015, 10, e0126359.	2.5	16
62	Thyroid function, as assessed by TSH, and future risk of venous thromboembolism: the Tromsø study. European Journal of Endocrinology, 2015, 173, 83-90.	3.7	16
63	Exploring the association between serum 25-hydroxyvitamin D and serum lipids—more than confounding?. European Journal of Clinical Nutrition, 2018, 72, 526-533.	2.9	16
64	Genetic Variations in the Vitamin D Receptor Predict Type 2 Diabetes and Myocardial Infarction in a Community-Based Population: The TromsÃ, Study. PLoS ONE, 2015, 10, e0145359.	2.5	15
65	Bone mineral density at the hip and its relation to fat mass and lean mass in adolescents: the TromsÃ, Study, Fit Futures. BMC Musculoskeletal Disorders, 2018, 19, 21.	1.9	15
66	Alanine Aminotransferase and Body Composition in Obese Men and Women. Disease Markers, 2019, 2019, 1-9.	1.3	15
67	The Role of Vitamin D Binding Protein, Total and Free 25-Hydroxyvitamin D in Diabetes. Frontiers in Endocrinology, 2019, 10, 79.	3.5	15
68	Smoking and other determinants of bone turnover. PLoS ONE, 2019, 14, e0225539.	2.5	15
69	Associations between Polymorphisms Related to Calcium Metabolism and Human Height: The TromsÃ, Study. Annals of Human Genetics, 2012, 76, 200-210.	0.8	12
70	Trends in known and undiagnosed diabetes, HbA1c levels, cardiometabolic risk factors and diabetes treatment target achievement in repeated cross-sectional surveys: the population-based TromsÃ, Study 1994–2016. BMJ Open, 2021, 11, e041846.	1.9	11
71	Bone mineral density is associated with vitamin D related rs6013897 and estrogen receptor polymorphism rs4870044: The TromsÃ, study. PLoS ONE, 2017, 12, e0173045.	2.5	11
72	Evaluation of Serum 25-Hydroxyvitamin D as a Predictor of Carotid Intima-Media Thickness and Carotid Total Plaque Area in Nonsmokers: The TromsÃ, Study. International Journal of Endocrinology, 2013, 2013, 1-7.	1.5	9

#	Article	IF	CITATIONS
73	C3-epimerization of 25-hydroxyvitamin D increases with increasing serum 25-hydroxyvitamin D levels and shows a high degree of tracking over time. Clinical Biochemistry, 2018, 54, 61-67.	1.9	9
74	Increased calcium intake is associated lower serum 25-hydroxyvitamin D levels in subjects with adequate vitamin D intake: a population-based observational study. BMC Nutrition, 2020, 6, 49.	1.6	8
75	Tracking of serum 25-hydroxyvitamin D during 21 years. European Journal of Clinical Nutrition, 2021, 75, 1069-1076.	2.9	8
76	Four months vitamin D supplementation to vitamin D insufficient individuals does not improve muscular strength: A randomized controlled trial. PLoS ONE, 2019, 14, e0225600.	2.5	7
77	Polymorphisms in the vitamin D system and mortality – The Tromsø study. Journal of Steroid Biochemistry and Molecular Biology, 2019, 195, 105481.	2.5	5
78	100 YEARS OF VITAMIN D: Combined hormonal contraceptives and vitamin D metabolism in adolescent girls. Endocrine Connections, 2022, 11, .	1.9	5
79	Creatine kinase in relation to body fat in a Caucasian overweight and obese population. Scandinavian Journal of Clinical and Laboratory Investigation, 2018, 78, 43-48.	1.2	4
80	Serum PTH is not a good marker for defining a threshold for vitamin D deficiency. Endocrine Connections, 2020, 9, 396-404.	1.9	4
81	Lost relation between blood pressure and serum 25-hydroxyvitamin D. Blood Pressure, 2019, 28, 64-73.	1.5	3
82	Vitamin D: no cure for depression. American Journal of Clinical Nutrition, 2019, 110, 1043-1044.	4.7	2
83	No association between birth season and vitamin D concentration in adults in a North Norwegian population-the TromsÃ, study. Annals of Translational Medicine, 2016, 4, 20.	1.7	2
84	Response to the Letter by Muscogiuri et al. Journal of Clinical Endocrinology and Metabolism, 2016, 101, L45-L45.	3.6	0