
Refaat E Gabr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6607691/publications.pdf Version: 2024-02-01

REEAAT F CARD

#	Article	IF	CITATIONS
1	Deep Learning for Predicting Enhancing Lesions in Multiple Sclerosis from Noncontrast MRI. Radiology, 2020, 294, 398-404.	7.3	67
2	Brain and lesion segmentation in multiple sclerosis using fully convolutional neural networks: A large-scale study. Multiple Sclerosis Journal, 2020, 26, 1217-1226.	3.0	58
3	Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks. Journal of Magnetic Resonance Imaging, 2019, 50, 1260-1267.	3.4	50
4	On restoring motion-induced signal loss in single-voxel magnetic resonance spectra. Magnetic Resonance in Medicine, 2006, 56, 754-760.	3.0	44
5	Ongoing Secondary Degeneration of the Limbic System in Patients With Ischemic Stroke: A Longitudinal MRI Study. Frontiers in Neurology, 2019, 10, 154.	2.4	35
6	Magnetic resonance Spectroscopy with Linear Algebraic Modeling (SLAM) for higher speed and sensitivity. Journal of Magnetic Resonance, 2012, 218, 66-76.	2.1	31
7	Deepâ€Learningâ€Based Neural Tissue Segmentation of MRI in Multiple Sclerosis: Effect of Training Set Size. Journal of Magnetic Resonance Imaging, 2020, 51, 1487-1496.	3.4	31
8	Quantifying in vivo MR spectra with circles. Journal of Magnetic Resonance, 2006, 179, 152-163.	2.1	30
9	Cardiac work is related to creatine kinase energy supply in human heart failure: a cardiovascular magnetic resonance spectroscopy study. Journal of Cardiovascular Magnetic Resonance, 2018, 20, 81.	3.3	29
10	High-energy phosphate transfer in human muscle: diffusion of phosphocreatine. American Journal of Physiology - Cell Physiology, 2011, 301, C234-C241.	4.6	28
11	Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding. Journal of Magnetic Resonance, 2013, 237, 125-138.	2.1	24
12	Two repetition time saturation transfer (TwiST) with spill-over correction to measure creatine kinase reaction rates in human hearts. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 70.	3.3	24
13	Quantification of human highâ€energy phosphate metabolite concentrations at 3 T with partial volume and sensitivity corrections. NMR in Biomedicine, 2013, 26, 1363-1371.	2.8	22
14	Deep learning segmentation of gadolinium-enhancing lesions in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 519-527.	3.0	22
15	Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy. Journal of Magnetic Resonance, 2008, 191, 248-258.	2.1	21
16	Limbic Pathway Correlates of Cognitive Impairment in Multiple Sclerosis. Journal of Neuroimaging, 2017, 27, 37-42.	2.0	19
17	Are multi-contrast magnetic resonance images necessary for segmenting multiple sclerosis brains? A large cohort study based on deep learning. Magnetic Resonance Imaging, 2020, 65, 8-14.	1.8	19
18	Serial quantitative neuroimaging of iron in the intracerebral hemorrhage pig model. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 375-381.	4.3	18

Refaat E Gabr

#	Article	IF	CITATIONS
19	Quantitative Assessment of In Vivo Human Anterior Cruciate Ligament Autograft Remodeling: A 3-Dimensional UTE-T2* Imaging Study. American Journal of Sports Medicine, 2020, 48, 2939-2947.	4.2	16
20	Deconvolution-interpolation gridding (DING): Accurate reconstruction for arbitraryk-space trajectories. Magnetic Resonance in Medicine, 2006, 56, 1182-1191.	3.0	15
21	Optimal combination of FLAIR and T2â€weighted MRI for improved lesion contrast in multiple sclerosis. Journal of Magnetic Resonance Imaging, 2016, 44, 1293-1300.	3.4	15
22	Indentation and Transverse Diameter of the Meckel Cave: Imaging Markers to Diagnose Idiopathic Intracranial Hypertension. American Journal of Neuroradiology, 2020, 41, 1487-1494.	2.4	14
23	MRI dynamic range and its compatibility with signal transmission media. Journal of Magnetic Resonance, 2009, 198, 137-145.	2.1	12
24	Serial Metabolic Evaluation of Perihematomal Tissues in the Intracerebral Hemorrhage Pig Model. Frontiers in Neuroscience, 2019, 13, 888.	2.8	12
25	Automated patientâ€specific optimization of threeâ€dimensional doubleâ€inversion recovery magnetic resonance imaging. Magnetic Resonance in Medicine, 2016, 75, 585-593.	3.0	10
26	Serial Cerebral Metabolic Changes in Patients With Ischemic Stroke Treated With Autologous Bone Marrow Derived Mononuclear Cells. Frontiers in Neurology, 2019, 10, 141.	2.4	7
27	Progressive Magnetic Resonance Image Reconstruction Based on Iterative Solution of a Sparse Linear System. International Journal of Biomedical Imaging, 2006, 2006, 1-9.	3.9	6
28	Interleaved susceptibilityâ€weighted and FLAIR MRI for imaging lesionâ€penetrating veins in multiple sclerosis. Magnetic Resonance in Medicine, 2018, 80, 1132-1137.	3.0	6
29	Mitochondrial Creatine Kinase Attenuates Pathologic Remodeling in Heart Failure. Circulation Research, 2022, , CIRCRESAHA121319648.	4.5	6
30	Improving spectral quality in fetal brain magnetic resonance spectroscopy using constructive averaging. Prenatal Diagnosis, 2015, 35, 1294-1300.	2.3	5
31	Scale- and orientation-invariant keypoints in higher-dimensional data. , 2015, , .		5
32	MRI acoustic noise-modulated computer animations for patient distraction and entertainment with application in pediatric psychiatric patients. Magnetic Resonance Imaging, 2019, 61, 16-19.	1.8	5
33	Combined intra- and inter-slice motion artifact suppression in magnetic resonance imaging. , 2003, , .		4
34	A framework for precision magnetic resonance imaging: Initial results. , 2016, , .		3
35	Diffusion Tensor Imagingâ€Defined Sulcal Enlargement Is Related to Cognitive Impairment in Multiple Sclerosis. Journal of Neuroimaging, 2017, 27, 312-317.	2.0	3
36	Patientâ€specific 3D FLAIR for enhanced visualization of brain white matter lesions in multiple sclerosis. Journal of Magnetic Resonance Imaging, 2017, 46, 557-564.	3.4	2

Refaat E Gabr

#	Article	IF	CITATIONS
37	Sensitive Detection of Infratentorial and Upper Cervical Cord Lesions in Multiple Sclerosis with Combined 3D FLAIR and T2-Weighted (FLAIR3) Imaging. American Journal of Neuroradiology, 2020, 41, 2062-2067.	2.4	2
38	Cerebrovascular Effects of Lower Body Negative Pressure at 3T MRI : Implications for Longâ€Duration Space Travel. Journal of Magnetic Resonance Imaging, 2022, , .	3.4	2
39	Optimizing kernel size in generalized auto-calibrating partially parallel acquisition in parallel magnetic resonance imaging. Proceedings of SPIE, 2010, , .	0.8	1
40	GRAPE: a graphical pipeline environment for image analysis in adaptive magnetic resonance imaging. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 449-457.	2.8	1
41	Platform for Automated Real-Time High Performance Analytics on Medical Image Data. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 318-324.	6.3	1
42	Characterizing the time course of cerebrovascular reactivity in multiple sclerosis. Journal of Neuroimaging, 2022, , .	2.0	1
43	Imaging Intralesional Heterogeneity in Multiple Sclerosis using a T2 Filter. , 2018, , .		0
44	Editorial for "Reliability of Changes in Brain Volume Determined by Longitudinal Voxelâ€Based Morphometry― Journal of Magnetic Resonance Imaging, 2021, 54, 617-617.	3.4	0
45	Editorial for "A Multiâ€Modality Fusion Deep Learning Model Based on <scp>DCEâ€MRI</scp> for Preoperative Prediction of Microvascular Invasion in Intrahepatic Cholangiocarcinoma― Journal of Magnetic Resonance Imaging, 2022, 56, 1040-1041.	3.4	0