Angus J Wilkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6607233/publications.pdf

Version: 2024-02-01

30070 37204 10,595 190 54 96 citations g-index h-index papers 195 195 195 5842 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Non-destructive imaging of residual strains in GaN and their effect on optical and electrical properties using correlative light–electron microscopy. Journal of Applied Physics, 2022, 131, 075303.	2.5	1
2	Macroscopic analysis of time dependent plasticity in Ti alloys. Journal of Materials Science and Technology, 2022, , .	10.7	0
3	Cold dwell behaviour of Ti6Al alloy: Understanding load shedding using digital image correlation and dislocation based crystal plasticity simulations. Journal of Materials Science and Technology, 2022, 128, 254-272.	10.7	6
4	Nanoindentation in multi-modal map combinations: a correlative approach to local mechanical property assessment. Journal of Materials Research, 2021, 36, 2235-2250.	2.6	24
5	Dislocation interactions in olivine control postseismic creep of the upper mantle. Nature Communications, 2021, 12, 3496.	12.8	14
6	Effect of sample thinning on strains and lattice rotations measured from Transmission Kikuchi diffraction in the SEM. Ultramicroscopy, 2021, 225, 113267.	1.9	0
7	An in-situ synchrotron diffraction study of stress relaxation in titanium: Effect of temperature and oxygen on cold dwell fatigue. Acta Materialia, 2021, 213, 116937.	7.9	8
8	Ex Situ and In Situ Studies of Radiation Damage Mechanisms in Zr-Nb Alloys. , 2021, , 408-434.		2
9	J-integral analysis of the elastic strain fields of ferrite deformation twins using electron backscatter diffraction. Acta Materialia, 2021, 218, 117203.	7.9	12
10	Dislocation density distribution at slip band-grain boundary intersections. Acta Materialia, 2020, 182, 172-183.	7.9	60
11	On the assessment of creep damage evolution in nickel-based superalloys through correlative HR-EBSD and cECCI studies. Acta Materialia, 2020, 185, 13-27.	7.9	21
12	Tensionâ€"compression asymmetry of <mml:math altimg="si3.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>ã€^</mml:mo><mml:mi>c</mml:mi><mml:mo></mml:mo></mml:mrow></mml:math> slip in Tiâ€"6Al. Scripta Materialia, 2020, 178, 119-123.	, 5 . 2	21
13	Scratching the surface: Flastic rotations beneath paposcratch and papoindentation tests. Acta	7.9	28
14	Cold creep of titanium: Analysis of stress relaxation using synchrotron diffraction and crystal plasticity simulations. Acta Materialia, 2020, 199, 561-577.	7.9	22
15	On the brittle-to-ductile transition of the as-cast TiVNbTa refractory high-entropy alloy. Materialia, 2020, 14, 100940.	2.7	16
16	Dislocation interactions during low-temperature plasticity of olivine and their impact on the evolution of lithospheric strength. Earth and Planetary Science Letters, 2020, 543, 116349.	4.4	24
17	Tetragonality of Fe-C martensite – a pattern matching electron backscatter diffraction analysis compared to X-ray diffraction. Acta Materialia, 2020, 195, 728-738.	7.9	32
18	Thin Film Electrodes: Surface Evolution of Lithium Titanate upon Electrochemical Cycling Using a Combination of Surface Specific Characterization Techniques (Adv. Mater. Interfaces 11/2020). Advanced Materials Interfaces, 2020, 7, 2070062.	3.7	0

#	Article	IF	CITATIONS
19	Surface Evolution of Lithium Titanate upon Electrochemical Cycling Using a Combination of Surface Specific Characterization Techniques. Advanced Materials Interfaces, 2020, 7, 1902164.	3.7	2
20	Short communication: †Low activation, refractory, high entropy alloys for nuclear applicationsâ€. Journal of Nuclear Materials, 2019, 526, 151744.	2.7	87
21	Forescattered electron imaging of nanoparticles in scanning electron microscopy. Materials Characterization, 2019, 155, 109814.	4.4	8
22	Highâ€Angular Resolution Electron Backscatter Diffraction as a New Tool for Mapping Lattice Distortion in Geological Minerals. Journal of Geophysical Research: Solid Earth, 2019, 124, 6337-6358.	3.4	30
23	Mechanism of the \hat{l} ±-Zr to hexagonal-ZrO transformation and its impact on the corrosion performance of nuclear Zr alloys. Acta Materialia, 2019, 179, 328-341.	7.9	34
24	Indexing electron backscatter diffraction patterns with a refined template matching approach. Ultramicroscopy, 2019, 207, 112845.	1.9	26
25	Indexing Electron Backscatter Diffraction Patterns with a Refined Template Matching Approach. Microscopy and Microanalysis, 2019, 25, 1962-1963.	0.4	3
26	Grain boundary serration in nickel alloy inconel 600: Quantification and mechanisms. Acta Materialia, 2019, 181, 352-366.	7.9	41
27	Mapping the full lattice strain tensor of a single dislocation by high angular resolution transmission Kikuchi diffraction (HR-TKD). Scripta Materialia, 2019, 164, 36-41.	5.2	39
28	On the depth resolution of transmission Kikuchi diffraction (TKD) analysis. Ultramicroscopy, 2019, 205, 5-12.	1.9	27
29	Pattern matching analysis of electron backscatter diffraction patterns for pattern centre, crystal orientation and absolute elastic strain determination – accuracy and precision assessment. Ultramicroscopy, 2019, 202, 87-99.	1.9	35
30	The impact of water on slip system activity in olivine and the formation of bimodal crystallographic preferred orientations. Earth and Planetary Science Letters, 2019, 508, 51-61.	4.4	19
31	Applications of multivariate statistical methods and simulation libraries to analysis of electron backscatter diffraction and transmission Kikuchi diffraction datasets. Ultramicroscopy, 2019, 196, 88-98.	1.9	26
32	Microstructural Evolution of Mechanically Deformed Polycrystalline Silicon for Kerfless Photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800578.	1.8	3
33	Quantitative investigation of micro slip and localization in polycrystalline materials under uniaxial tension. International Journal of Plasticity, 2018, 108, 88-106.	8.8	94
34	Strong grain neighbour effects in polycrystals. Nature Communications, 2018, 9, 171.	12.8	92
35	Microstructural degradation of polycrystalline superalloys from oxidized carbides and implications on crack initiation. Scripta Materialia, 2018, 147, 59-63.	5.2	49
36	On the state of deformation in a polycrystalline material in three-dimension: Elastic strains, lattice rotations, and deformation mechanisms. International Journal of Plasticity, 2018, 106, 145-163.	8.8	22

#	Article	IF	CITATIONS
37	High Angular Resolution Electron Backscatter Diffraction Studies of Tetragonality in Fe-C Martensitic Steels. Microscopy and Microanalysis, 2018, 24, 962-963.	0.4	12
38	<i>AstroEBSD</i> : exploring new space in pattern indexing with methods launched from an astronomical approach. Journal of Applied Crystallography, 2018, 51, 1525-1534.	4.5	28
39	Statistical effects in X-ray diffraction lattice strain measurements of ferritic steel using crystal plasticity. Materials and Design, 2018, 153, 159-165.	7. O	8
40	On the Influence of Nb/Ti Ratio on Environmentally-Assisted Crack Growth in High-Strength Nickel-Based Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3923-3937.	2.2	7
41	Grain Boundary Serration in Nickel-Based Superalloy Inconel 600: Generation and Effects on Mechanical Behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4324-4342.	2.2	53
42	Environmentally-assisted grain boundary attack as a mechanism of embrittlement in a nickel-based superalloy. Acta Materialia, 2017, 126, 361-371.	7.9	107
43	Cross-correlation based high resolution electron backscatter diffraction and electron channelling contrast imaging for strain mapping and dislocation distributions in InAlN thin films. Acta Materialia, 2017, 125, 125-135.	7.9	45
44	On the microtwinning mechanism in a single crystal superalloy. Acta Materialia, 2017, 135, 314-329.	7.9	102
45	Diffraction effects and inelastic electron transport in angleâ€resolved microscopic imaging applications. Journal of Microscopy, 2017, 267, 330-346.	1.8	13
46	Growth of { <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>11</mml:mn><mml:mrow><mml:mover accent="true"><mml:mn>2</mml:mn><mml:mo>A^-</mml:mo></mml:mover></mml:mrow><mml:mn>2accent="true"><mml:mn>2</mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="true"><mml:mn>accent="</mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mn></mml:mrow></mml:math>	nn <i>₮₰</i> mml	:m 79 w>
47	Applications of Multivariate Statistical Methods to Analysis of Electron Backscatter Diffraction and Transmission Kikuchi Diffraction Datasets. Microscopy and Microanalysis, 2017, 23, 544-545.	0.4	O
48	Size effects resolve discrepancies in 40 years of work on low-temperature plasticity in olivine. Science Advances, 2017, 3, e1701338.	10.3	51
49	Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffraction. Scientific Reports, 2017, 7, 10916.	3.3	20
50	Mapping Anti-phase Domains by Polarity Sensitive Orientation Imaging Using Electron Backscatter Diffraction. Microscopy and Microanalysis, 2017, 23, 1522-1523.	0.4	0
51	On the composition of microtwins in a single crystal nickel-basedÂsuperalloy. Scripta Materialia, 2017, 127, 37-40.	5.2	59
52	On the role of boron on improving ductility in a new polycrystalline superalloy. Acta Materialia, 2017, 124, 489-500.	7.9	90
53	A synchrotron X-ray diffraction study of non-proportional strain-path effects. Acta Materialia, 2017, 124, 290-304.	7.9	30
54	Dislocation Interactions in Olivine Revealed by HRâ€EBSD. Journal of Geophysical Research: Solid Earth, 2017, 122, 7659-7678.	3.4	26

#	Article	IF	Citations
55	Effect of sliding speed and counterface properties on the tribo-oxidation of brush seal material under dry sliding conditions. Tribology International, 2016, 96, 373-381.	5.9	28
56	Microstrain distribution mapping on CulnSe2 thin films by means of electron backscatter diffraction, X-ray diffraction, and Raman microspectroscopy. Ultramicroscopy, 2016, 169, 89-97.	1.9	12
57	Assessment of X-ray diffraction and crystal plasticity lattice strain evolutions under biaxial loading. International Journal of Plasticity, 2016, 83, 1-18.	8.8	28
58	On the effects of reorientation and shear transfer during twin formation: Comparison between high resolution electron backscatter diffraction experiments and a crystal plasticity finite element model. International Journal of Plasticity, 2016, 84, 160-182.	8.8	54
59	Microstrain distributions in polycrystalline thin films measured by X-ray microdiffraction. Journal of Applied Crystallography, 2016, 49, 632-635.	4.5	10
60	Tutorial: Crystal orientations and EBSD $\hat{a}\in$ " Or which way is up?. Materials Characterization, 2016, 117, 113-126.	4.4	121
61	Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction. Ultramicroscopy, 2016, 168, 34-45.	1.9	72
62	Sample size effects on grain boundary sliding. Scripta Materialia, 2016, 114, 17-20.	5.2	12
63	A study of dislocation transmission through a grain boundary in hcp Ti–6Al using micro-cantilevers. Acta Materialia, 2016, 103, 416-423.	7.9	26
64	Assessment of residual stress fields at deformation twin tips and the surrounding environments. Acta Materialia, 2016, 105, 219-231.	7.9	70
65	Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D. Acta Materialia, 2015, 96, 229-236.	7.9	76
66	Characterization of Elastic Strain Field and Geometrically Necessary Dislocation Distribution in Stress Corrosion Cracking of 316 Stainless Steels by Transmission Kikuchi Diffraction. Microscopy and Microanalysis, 2015, 21, 605-606.	0.4	2
67	ã€^a〉 Prismatic, ã€^a〉 basal, and ã€^c+a〉 slip strengths of commercially pure Zr by micro-cantilever te Materialia, 2015, 96, 249-257.	sts. Acta	139
68	High-Resolution Electron Backscatter Diffraction in III-Nitride Semiconductors. Microscopy and Microanalysis, 2015, 21, 2217-2218.	0.4	2
69	Evolution of intragranular stresses and dislocation densities during cyclic deformation of polycrystalline copper. Acta Materialia, 2015, 94, 193-204.	7.9	57
70	On the mechanistic basis of deformation at the microscale in hexagonal close-packed metals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140881.	2.1	128
71	A discrete dislocation plasticity study of the micro-cantilever size effect. Acta Materialia, 2015, 88, 271-282.	7.9	63
72	Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels. Micron, 2015, 75, 1-10.	2.2	39

#	Article	IF	CITATIONS
73	The orientation and strain dependence of dislocation structure evolution in monotonically deformed polycrystalline copper. International Journal of Plasticity, 2015, 69, 102-117.	8.8	82
74	The effect of pattern overlap on the accuracy of high resolution electron backscatter diffraction measurements. Ultramicroscopy, 2015, 155, 62-73.	1.9	31
75	A synchrotron X-ray diffraction study of in situ biaxial deformation. Acta Materialia, 2015, 90, 46-58.	7.9	48
76	Measurement of probability distributions for internal stresses in dislocated crystals. Applied Physics Letters, 2014, 105, .	3.3	30
77	Electron Channeling Contrast Imaging of Defects in III-Nitride Semiconductors. Microscopy and Microanalysis, 2014, 20, 1024-1025.	0.4	0
78	A review of advances and challenges in EBSD strain mapping. IOP Conference Series: Materials Science and Engineering, 2014, 55, 012020.	0.6	32
79	In-service materials support for safety critical applications – A case study of a high strength Ti-alloy using advanced experimental and modelling techniques. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 599, 166-173.	5.6	27
80	ã€^c+a〉 Dislocations in deformed Ti–6Al–4V micro-cantilevers. Acta Materialia, 2014, 76, 127-134.	7.9	41
81	Slip band–grain boundary interactions in commercial-purity titanium. Acta Materialia, 2014, 76, 1-12.	7.9	258
82	Simulation of deformation twins and their interactions with cracks. Computational Materials Science, 2014, 89, 224-232.	3.0	12
83	Comparison of Techniques for Strain Measurements in CulnSe2 Absorber Layers of Thin-film Solar Cells. Microscopy and Microanalysis, 2014, 20, 1464-1465.	0.4	0
84	Direct Detection of Electron Backscatter Diffraction Patterns. Physical Review Letters, 2013, 111, 065506.	7.8	46
85	Electron Backscatter Diffraction: An Important Tool for Analyses of Structure–Property Relationships in Thin-Film Solar Cells. Jom, 2013, 65, 1222-1228.	1.9	8
86	Probing Deformation and Revealing Microstructural Mechanisms with Cross-Correlation-Based, High-Resolution Electron Backscatter Diffraction. Jom, 2013, 65, 1245-1253.	1.9	26
87	Assessing the precision of strain measurements using electron backscatter diffraction – part 1: Detector assessment. Ultramicroscopy, 2013, 135, 126-135.	1.9	43
88	Evolution of dislocation density distributions in copper during tensile deformation. Acta Materialia, 2013, 61, 7227-7239.	7.9	224
89	Assessing the precision of strain measurements using electron backscatter diffraction – Part 2: Experimental demonstration. Ultramicroscopy, 2013, 135, 136-141.	1.9	27
90	Measurement of geometrically necessary dislocation density with high resolution electron backscatter diffraction: Effects of detector binning and step size. Ultramicroscopy, 2013, 125, 1-9.	1.9	215

#	Article	IF	CITATIONS
91	Mapping type III intragranular residual stress distributions in deformed copper polycrystals. Acta Materialia, 2013, 61, 5895-5904.	7.9	42
92	Controlling the Orientation, Edge Geometry, and Thickness of Chemical Vapor Deposition Graphene. ACS Nano, 2013, 7, 1351-1359.	14.6	182
93	Strain Mapping with Electron Back Scatter Diffraction: Sensitivity Studies and Pattern Remapping. Microscopy and Microanalysis, 2013, 19, 684-685.	0.4	0
94	Rapid Nondestructive Analysis of Threading Dislocations in Wurtzite Materials Using the Scanning Electron Microscope. Physical Review Letters, 2012, 108, 135503.	7.8	56
95	Transmission electron microscopy of deformed Ti–6Al–4 V micro-cantilevers. Philosophical Magazine, 2012, 92, 3290-3314.	1.6	19
96	Use of a dislocation-based boundary element model to extract crack growth rates from depth distributions of intergranular stress corrosion cracks. Acta Materialia, 2012, 60, 5101-5108.	7.9	6
97	Determination of the complete microscale residual stress tensor at a subsurface carbide particle in a single-crystal superalloy from free-surface EBSD. Acta Materialia, 2012, 60, 5300-5310.	7.9	28
98	Strains, planes, and EBSD in materials science. Materials Today, 2012, 15, 366-376.	14.2	286
99	Geometrically necessary dislocation density distributions in cyclically deformed Ti–6Al–4V. Acta Materialia, 2012, 60, 5516-5525.	7.9	61
100	Stress fields and geometrically necessary dislocation density distributions near the head of a blocked slip band. Acta Materialia, 2012, 60, 5773-5782.	7.9	180
101	Crystal plasticity analysis of micro-deformation, lattice rotation and geometrically necessary dislocation density. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2509-2531.	2.1	98
102	Accumulation of geometrically necessary dislocations near grain boundaries in deformed copper. Philosophical Magazine Letters, 2012, 92, 580-588.	1.2	50
103	Local deformation patterns in Ti–6Al–4V under tensile, fatigue and dwell fatigue loading. International Journal of Fatigue, 2012, 43, 111-119.	5.7	80
104	Nanoindentation and micro-mechanical fracture toughness of electrodeposited nanocrystalline Ni–W alloy films. Thin Solid Films, 2012, 520, 4369-4372.	1.8	42
105	High resolution electron backscatter diffraction measurements of elastic strain variations in the presence of larger lattice rotations. Ultramicroscopy, 2012, 114, 82-95.	1.9	160
106	Assessment of lattice strain, rotation and dislocation content using electron back-scatter diffraction. Journal of Physics: Conference Series, 2011, 326, 012004.	0.4	5
107	Mechanical properties of ion-implanted tungsten–5 wt% tantalum. Physica Scripta, 2011, T145, 014076.	2.5	45
108	Measurement of residual elastic strain and lattice rotations with high resolution electron backscatter diffraction. Ultramicroscopy, 2011, 111, 1395-1404.	1.9	149

#	Article	IF	CITATIONS
109	A microcantilever investigation of size effect, solid-solution strengthening and second-phase strengthening for ã€^a〉 prism slip in alpha-Ti. Acta Materialia, 2011, 59, 5970-5981.	7.9	92
110	Geometrically necessary dislocation density distributions in Ti–6Al–4V deformed in tension. Acta Materialia, 2011, 59, 6489-6500.	7.9	113
111	High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy. Acta Materialia, 2011, 59, 263-272.	7.9	92
112	Micro-mechanical measurements of fracture toughness of bismuth embrittled copper grain boundaries. Philosophical Magazine Letters, 2011, 91, 394-400.	1.2	66
113	Micro-cantilever testing of âŸʿa⟩ prismatic slip in commercially pure Ti. Philosophical Magazine, 2011, 91, 1137-1149.	1.6	29
114	Factors affecting the accuracy of high resolution electron backscatter diffraction when using simulated patterns. Ultramicroscopy, 2010, 110, 1443-1453.	1.9	120
115	Dislocation modeling of quasi-static crack propagation in an elasto-plastic medium. International Journal of Fracture, 2010, 164, 103-115.	2.2	3
116	Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti–6Al–4V alloy. Scripta Materialia, 2010, 62, 639-642.	5.2	130
117	High-resolution electron backscatter diffraction: An emerging tool for studying local deformation. Journal of Strain Analysis for Engineering Design, 2010, 45, 365-376.	1.8	73
118	Determination of elastic strain fields and geometrically necessary dislocation distributions near nanoindents using electron back scatter diffraction. Philosophical Magazine, 2010, 90, 1159-1177.	1.6	259
119	The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 695-719.	2.1	155
120	Elastic strain tensor measurement using electron backscatter diffraction in the SEM. Journal of Electron Microscopy, 2010, 59, S155-S163.	0.9	32
121	Investigation of elastic properties of single-crystal α-Ti using microcantilever beams. Philosophical Magazine Letters, 2010, 90, 503-512.	1.2	27
122	Measuring anisotropy in Young's modulus of copper using microcantilever testing. Journal of Materials Research, 2009, 24, 3268-3276.	2.6	94
123	Nanoindentation study of slip transfer phenomenon at grain boundaries. Journal of Materials Research, 2009, 24, 607-615.	2.6	107
124	Measuring Local Mechanical Properties using FIB Machined Cantilevers. Materials Research Society Symposia Proceedings, 2009, 1185, 13.	0.1	7
125	Mapping strains at the nanoscale using electron back scatter diffraction. Superlattices and Microstructures, 2009, 45, 285-294.	3.1	40
126	Anisotropy in the plastic flow properties of single-crystal \hat{l}_{\pm} titanium determined from micro-cantilever beams. Acta Materialia, 2009, 57, 5693-5705.	7.9	257

#	Article	IF	CITATIONS
127	Characterisation of plastic zones around crack-tips in pure single-crystal tungsten using electron backscatter diffraction. IOP Conference Series: Materials Science and Engineering, 2009, 3, 012015.	0.6	6
128	Strain Mapping Using Electron Backscatter Diffraction., 2009,, 231-249.		25
129	Ductile–brittle transition of polycrystalline iron and iron–chromium alloys. Journal of Nuclear Materials, 2008, 378, 305-311.	2.7	28
130	Electron Channeling and Ion Channeling Contrast Imaging of Dislocations in Nitride Thin Films. Microscopy and Microanalysis, 2008, 14, 1194-1195.	0.4	2
131	Electron backscatter diffraction and electron channeling contrast imaging of tilt and dislocations in nitride thin films. Physical Review B, 2007, 75, .	3.2	69
132	Brittle–ductile transitions in vanadium and iron–chromium. Journal of Nuclear Materials, 2007, 367-370, 637-643.	2.7	31
133	Quasiâ€eleavage fracture planes in spheroidized A533B steel. Journal of Microscopy, 2007, 227, 248-253.	1.8	12
134	Low-temperature fracture mechanisms in a spheroidised reactor pressure vessel steel. International Journal of Fracture, 2007, 144, 121-129.	2.2	6
135	Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal. International Journal of Plasticity, 2007, 23, 273-295.	8.8	207
136	Strain Tensor Mapping at the Nanoscale using Electron Back Scatter Diffraction. Microscopy and Microanalysis, 2006, 12, 66-67.	0.4	0
137	Characterisation of Epitaxial Lateral Overgrown GaN by Electron Backscatter Diffraction Correlated with Cross-Sectional Cathodoluminescence Spectroscopy. Microscopy and Microanalysis, 2006, 12, 1516-1517.	0.4	0
138	Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction. Acta Materialia, 2006, 54, 539-548.	7.9	210
139	High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity. Ultramicroscopy, 2006, 106, 307-313.	1.9	555
140	Characterizing dislocation structure evolution during cyclic deformation using electron channelling contrast imaging. Philosophical Magazine, 2006, 86, 4965-4981.	1.6	26
141	High resolution mapping of strains and rotations using electron backscatter diffraction. Materials Science and Technology, 2006, 22, 1271-1278.	1.6	275
142	Characterisation of nitride thin films by electron backscatter diffraction and electron channelling contrast imaging. Materials Science and Technology, 2006, 22, 1352-1358.	1.6	4
143	High resolution measurements of strain and tilt distributions in SiGe mesas using electron backscatter diffraction. Applied Physics Letters, 2006, 89, 241910.	3.3	16
144	Measurement of plastic strain of polycrystalline material by electron backscatter diffraction. Nuclear Engineering and Design, 2005, 235, 713-725.	1.7	214

#	Article	IF	CITATIONS
145	Characterization of Nitride Thin Films by Electron Backscatter Diffraction and Electron Channeling Contrast Imaging. Materials Research Society Symposia Proceedings, 2005, 892, 614.	0.1	O
146	Determination of the Structural and Luminescence Properties of Nitrides Using Electron Backscattered Diffraction and Photo- and Cathodoluminescence. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 532-536.	0.8	7
147	Orientation Dependence of the High Cycle Fatigue Properties in a Hot-Cross Rolled Al-Li 8090 Alloy Plate. Materials Science Forum, 2002, 396-402, 1279-1284.	0.3	2
148	High temperature fatigue crack growth in powder processed nickel based superalloy U720Li. Materials Science and Technology, 2002, 18, 349-353.	1.6	7
149	Modelling the initiation of cleavage fracture of ferritic steels. Acta Materialia, 2002, 50, 1229-1244.	7.9	34
150	Deformation Textures. , 2001, , 2022-2026.		1
151	A new method for determining small misorientations from electron back scatter diffraction patterns. Scripta Materialia, 2001, 44, 2379-2385.	5.2	130
152	Electron channelling contrast imaging characterization of dislocation structures associated with extrusion and intrusion systems and fatigue cracks in copper single crystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 1473-1488.	0.6	46
153	Grain boundary misorientation and thermal grooving in cube-textured Ni and Ni-Cr tape. IEEE Transactions on Applied Superconductivity, $2001, 11, 2923-2926$.	1.7	20
154	Modelling the effects of texture on the statistics of stage I fatigue crack growth. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 841-855.	0.6	40
155	Advances in SEM-based diffraction studies of defects and strains in semiconductors. Journal of Electron Microscopy, 2000, 49, 299-310.	0.9	48
156	A crystallographic mechanism for fatigue crack propagation through grain boundaries. Acta Materialia, 2000, 48, 4917-4927.	7.9	360
157	Measurement of fatigue crack plastic zones in fine grained materials using electron backscattered diffraction. Materials Science and Technology, 2000, 16, 457-462.	1.6	19
158	The Effects of Micro-Texture and \hat{l}^2 Particle Distribution on Short Fatigue Crack Growth in an Al-Li 8090 Alloy. Materials Science Forum, 2000, 331-337, 1549-1554.	0.3	4
159	Control of texture in Ag and Ag-alloy substrates for superconducting tapes. Superconductor Science and Technology, 2000, 13, 1399-1407.	3.5	32
160	Measuring Strains Using Electron Backscatter Diffraction. , 2000, , 231-246.		11
161	Fabrication of biaxially textured Ni substrates and LaNiO/sub 3/ buffer layers for Tl-1223 thick films. IEEE Transactions on Applied Superconductivity, 1999, 9, 2252-2255.	1.7	9
162	A self-aligning four-point bend testing rig and sample geometry effect in four-point bend fatigue. International Journal of Fatigue, 1999, 21, 889-894.	5.7	54

#	Article	IF	Citations
163	Decoherence in electron backscattering by kinked dislocations. Acta Crystallographica Section A: Foundations and Advances, 1999, 55, 234-245.	0.3	18
164	Influence of grain orientations on the initiation of fatigue damage in an Al-Li alloy. Journal of Microscopy, 1999, 195, 239-247.	1.8	17
165	Study of dislocation structures near fatigue cracks using electron channelling contrast imaging technique (ECCI). Journal of Microscopy, 1999, 195, 197-203.	1.8	20
166	A Multiple Slip Plane Model for Crack-Tip Plasticity. Materials Research Society Symposia Proceedings, 1999, 578, 309.	0.1	1
167	Microstructural Studies of Tl2Ba2Ca2Cu3Ox Thin Films on LaAlO3 and MgO Substrates Journal of Superconductivity and Novel Magnetism, 1998, 11, 71-72.	0.5	7
168	On the secondary recrystallisation of MA754. Acta Materialia, 1998, 46, 2809-2821.	7.9	15
169	Detection of small lattice strains using beam rocking on a nuclear microprobe. Nuclear Instruments & Methods in Physics Research B, 1998, 136-138, 1240-1243.	1.4	4
170	Modelling the threshold conditions for propagation of stage I fatigue cracks. Acta Materialia, 1998, 46, 379-390.	7.9	70
171	Methods for determining elastic strains from electron backscatter diffraction and electron channelling patterns. Materials Science and Technology, 1997, 13, 79-84.	1.6	25
172	Characterizing dislocation structures in bulk fatigued copper single crystals using electron channelling contrast imaging (ECCI). Philosophical Magazine Letters, 1997, 76, 237-246.	1.2	55
173	Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron, 1997, 28, 279-308.	2.2	282
174	Methods for determining elastic strains from electron backscatter diffraction and electron channelling patterns. Materials Science and Technology, 1997, 13, 79-84.	1.6	3
175	Observation of strain distributions in partially relaxed In0.2Ga0.8As on GaAs using electron channelling contrast imaging. Philosophical Magazine Letters, 1996, 73, 337-344.	1.2	14
176	Examination of fatigue crack plastic zones using scanning-electron-microscope-based electron diffraction techniques. Philosophical Magazine Letters, 1996, 74, 145-152.	1.2	35
177	A dislocation model for the two critical stress intensities required for threshold fatigue crack propagation. Scripta Materialia, 1996, 35, 1365-1371.	5.2	44
178	Fatigue damage at room temperature in aluminium single crystals—III. Lattice rotation. Acta Materialia, 1996, 44, 3477-3488.	7.9	35
179	Measurement of elastic strains and small lattice rotations using electron back scatter diffraction. Ultramicroscopy, 1996, 62, 237-247.	1.9	121
180	Faceted Voids and Grain Orientation at Solid State Diffusion Bonded Interfaces between Cu and Single Crystal Cubic ZrO ₂ . Materials Science Forum, 1996, 207-209, 253-256.	0.3	0

#	Article	IF	CITATIONS
181	The Role of Texture-Related Mobility in the Secondary Recrystallization of ODS Alloys. Materials Science Forum, 1996, 204-206, 443-448.	0.3	2
182	Singleâ \in crystal magnetic metal films on GaAs grown by electrodeposition. Applied Physics Letters, 1995, 67, 1316-1318.	3.3	25
183	Evidence from ion channeling images for the elastic relaxation of a Si0.85Ge0.15 layer grown on a patterned Si substrate. Applied Physics Letters, 1995, 67, 3566-3568.	3.3	7
184	The effects of surface stress relaxation on electron channelling contrast images of dislocations. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1995, 72, 81-103.	0.6	28
185	The measurement of local plastic deformation in a metalâ€matrix composite by electron backâ€scatter patterns. Journal of Microscopy, 1993, 169, 255-261.	1.8	18
186	Electron channelling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1993, 68, 59-80.	0.6	62
187	Interfacial stresses in a continuous fibre metal matrix composite. Scripta Metallurgica Et Materialia, 1992, 26, 387-392.	1.0	12
188	The distribution of plastic deformation in a metal matrix composite caused by straining transverse to the fibre direction. Acta Metallurgica Et Materialia, 1992, 40, 3357-3368.	1.8	44
189	Quantitative deformation studies using electron back scatter patterns. Acta Metallurgica Et Materialia, 1991, 39, 3047-3055.	1.8	163
190	Deformation studies of metal matrix composites using electron backscatter patterns. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 135, 189-193.	5 . 6	13