
Jingao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6606861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The subantarctic lithospheric mantle. Geological Society Memoir, 2023, 56, 115-132.	1.7	2
2	2D Functional Minerals as Sustainable Materials for Magnetoâ€Optics. Advanced Materials, 2022, 34, e2110464.	21.0	26
3	Linking deep CO2 outgassing to cratonic destruction. National Science Review, 2022, 9, .	9.5	9
4	Early Permian magmatism above a slab window in Inner Mongolia, North China: Implications for the Paleo-Asian Ocean subduction processes and accretionary crustal growth. Solid Earth Sciences, 2022, 7, 87-103.	1.7	3
5	Carbonated Big Mantle Wedge Extending to the NE Edge of the Stagnant Pacific Slab: Constraints from Late Mesozoic-Cenozoic Basalts from Far Eastern Russia. Journal of Earth Science (Wuhan, China), 2022, 33, 121-132.	3.2	7
6	Permian Remelting and Maturity of Continental Crust Revealed by the Daqing Peraluminous Granitic Batholith, Inner Mongolia. Lithosphere, 2022, 2022, .	1.4	0
7	Contrasting fates of subducting carbon related to different oceanic slabs in East Asia. Geochimica Et Cosmochimica Acta, 2022, 324, 156-173.	3.9	15
8	New insights into the mantle source of a large igneous province from highly siderophile element and Sr-Nd-Os isotope compositions of carbonate-rich ultramafic lamprophyres. Geochimica Et Cosmochimica Acta, 2022, 326, 77-96.	3.9	1
9	Nickel isotopic evidence for late-stage accretion of Mercury-like differentiated planetary embryos. Nature Communications, 2021, 12, 294.	12.8	16
10	Oxidation of the deep big mantle wedge by recycled carbonates: Constraints from highly siderophile elements and osmium isotopes. Geochimica Et Cosmochimica Acta, 2021, 295, 207-223.	3.9	15
11	Late Carboniferous to Early Permian ridge subduction identified in the southeastern Central Asian Orogenic Belt: Implications for the architecture and growth of continental crust in accretionary orogens. Lithos, 2021, 384-385, 105969.	1.4	8
12	Plume-driven recratonization of deep continental lithospheric mantle. Nature, 2021, 592, 732-736.	27.8	57
13	Age and provenance of the lithospheric mantle beneath the Chidliak kimberlite province, southern Baffin Island: Implications for the evolution of the North Atlantic Craton. Lithos, 2021, 390-391, 106124.	1.4	3
14	Deep continental roots and cratons. Nature, 2021, 596, 199-210.	27.8	93
15	Modification of Lithospheric Mantle by Melts/Fluids With Different Sulfur Fugacities During the Wilson Cycle: Insights From Lesvos and Global Ophiolitic Peridotites. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022445.	3.4	9
16	Osmium isotopes in peridotite xenoliths reveal major mid-Proterozoic lithosphere formation under the Transantarctic Mountains. Geochimica Et Cosmochimica Acta, 2021, 312, 25-43.	3.9	6
17	Dating post-Archean lithospheric mantle: Insights from Re-Os and Lu-Hf isotopic systematics of the Cameroon Volcanic Line peridotites. Geochimica Et Cosmochimica Acta, 2020, 278, 177-198.	3.9	19
18	JULOC: A local 3-D high-resolution crustal model in South China for forecasting geoneutrino measurements at JUNO. Physics of the Earth and Planetary Interiors, 2020, 299, 106409.	1.9	9

Jingao Liu

#	Article	IF	CITATIONS
19	Initiation of the North China Craton destruction: Constraints from the diamond-bearing alkaline basalts from Lan'gan, China. Gondwana Research, 2020, 80, 228-243.	6.0	10
20	Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective. Earth and Planetary Science Letters, 2020, 531, 115969.	4.4	19
21	Architecture and evolution of the lithospheric roots beneath circum-cratonic orogenic belts–The Xing'an Mongolia Orogenic Belt and its relationship with adjacent North China and Siberian cratonic roots. Lithos, 2020, 376-377, 105798.	1.4	3
22	Sulfide Aggregation in Ophiolitic Dunite Channels Explains Osâ€Isotope Mismatch between Oceanic Crust and Mantle. Acta Geologica Sinica, 2020, 94, 66-66.	1.4	0
23	Corrigendum to "Sulfide in dunite channels reflects long-distance reactive migration of mid-ocean-ridge melts from mantle source to crust: A Re-Os isotopic perspective―[Earth Planet. Sci. Lett. 531 (2020) 115969]. Earth and Planetary Science Letters, 2020, 535, 116136.	4.4	2
24	The complex life cycle of oceanic lithosphere: A study of Yarlung-Zangbo ophiolitic peridotites, Tibet. Geochimica Et Cosmochimica Acta, 2020, 277, 175-191.	3.9	41
25	The evolution of the Kaapvaal craton: A multi-isotopic perspective from lithospheric peridotites from Finsch diamond mine. Precambrian Research, 2019, 331, 105380.	2.7	9
26	Thinning and destruction of the lithospheric mantle root beneath the North China Craton: A review. Earth-Science Reviews, 2019, 196, 102873.	9.1	124
27	The Metasomatized Mantle beneath the North Atlantic Craton: Insights from Peridotite Xenoliths of the Chidliak Kimberlite Province (NE Canada). Journal of Petrology, 2019, 60, 1991-2024.	2.8	14
28	Continent stabilisation by lateral accretion of subduction zone-processed depleted mantle residues; insights from Zealandia. Earth and Planetary Science Letters, 2019, 507, 175-186.	4.4	50
29	Age and composition of the subcontinental lithospheric mantle beneath the Xing'an–Mongolia Orogenic Belt: Implications for the construction of microcontinents during accretionary orogenesis. Lithos, 2019, 326-327, 556-571.	1.4	10
30	High-precision tungsten isotopic measurement by negative thermal ionization mass spectrometry (NTIMS). Acta Petrologica Sinica, 2019, 35, 606-616.	0.8	1
31	A reconnaissance view of tungsten reservoirs in some crustal and mantle rocks: Implications for interpreting W isotopic compositions and crust-mantle W cycling. Geochimica Et Cosmochimica Acta, 2018, 223, 300-318.	3.9	16
32	Petrogenesis and tectonics of the Acasta Gneiss Complex derived from integrated petrology and 142Nd and 182W extinct nuclide-geochemistry. Earth and Planetary Science Letters, 2018, 494, 12-22.	4.4	53
33	Cratons, kimberlites and diamonds: selected papers of the 11th International Kimberlite Conference. Mineralogy and Petrology, 2018, 112, 1-3.	1.1	6
34	Lateral H2O variation in the Zealandia lithospheric mantle controls orogen width. Earth and Planetary Science Letters, 2018, 502, 200-209.	4.4	15
35	Mantle composition, age and geotherm beneath the Darby kimberlite field, west central Rae Craton. Mineralogy and Petrology, 2018, 112, 57-70.	1.1	9
36	Diamondiferous Paleoproterozoic mantle roots beneath Arctic Canada: A study of mantle xenoliths from Parry Peninsula and Central Victoria Island. Geochimica Et Cosmochimica Acta, 2018, 239, 284-311.	3.9	14

Jingao Liu

#	Article	IF	CITATIONS
37	Diffusion-zoned pyroxenes in an isotopically heterogeneous mantle lithosphere beneath the Dunedin Volcanic Group, New Zealand, and their implications for intraplate alkaline magma sources. Lithosphere, 2017, 9, 463-475.	1.4	30
38	Rhenium-osmium isotopes and highly siderophile elements in ultramafic rocks from the Eoarchean Saglek Block, northern Labrador, Canada: implications for Archean mantle evolution. Geochimica Et Cosmochimica Acta, 2017, 216, 286-311.	3.9	20
39	Precise and accurate Re–Os isotope dating of organic-rich sedimentary rocks by thermal ionization mass spectrometry with an improved H2O2-HNO3 digestion procedure. International Journal of Mass Spectrometry, 2017, 421, 263-270.	1.5	14
40	GGR Biennial Critical Review: Analytical Developments Since 2014. Geostandards and Geoanalytical Research, 2017, 41, 493-562.	3.1	11
41	Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle. Geochimica Et Cosmochimica Acta, 2017, 198, 151-167.	3.9	135
42	Mantle depletion and metasomatism recorded in orthopyroxene in highly depleted peridotites. Chemical Geology, 2016, 441, 280-291.	3.3	44
43	Widespread tungsten isotope anomalies and W mobility in crustal and mantle rocks of the Eoarchean Saglek Block, northern Labrador, Canada: Implications for early Earth processes and W recycling. Earth and Planetary Science Letters, 2016, 448, 13-23.	4.4	51
44	Age and evolution of the deep continental root beneath the central Rae craton, northern Canada. Precambrian Research, 2016, 272, 168-184.	2.7	29
45	The longevity of Archean mantle residues in the convecting upper mantle and their role in young continent formation. Earth and Planetary Science Letters, 2015, 424, 109-118.	4.4	64
46	Copper isotopic composition of the silicate Earth. Earth and Planetary Science Letters, 2015, 427, 95-103.	4.4	127
47	In search of late-stage planetary building blocks. Chemical Geology, 2015, 411, 125-142.	3.3	61
48	Diverse impactors in Apollo 15 and 16 impact melt rocks: Evidence from osmium isotopes and highly siderophile elements. Geochimica Et Cosmochimica Acta, 2015, 155, 122-153.	3.9	32
49	Reassessment of Hydrofluoric Acid Desilicification in the Carius Tube Digestion Technique for Re–Os Isotopic Determination in Geological Samples. Geostandards and Geoanalytical Research, 2015, 39, 17-30.	3.1	52
50	Big insights from tiny peridotites: Evidence for persistence of Precambrian lithosphere beneath the eastern North China Craton. Tectonophysics, 2015, 650, 104-112.	2.2	25
51	Characterization of the dominant impactor signature for Apollo 17 impact melt rocks. Geochimica Et Cosmochimica Acta, 2014, 131, 62-80.	3.9	29
52	Rapid, precise and accurate Os isotope ratio measurements of nanogram to sub-nanogram amounts using multiple Faraday collectors and amplifiers equipped with 1012 I© resistors by N-TIMS. Chemical Geology, 2014, 363, 301-311.	3.3	49
53	New insights into the Hadean mantle revealed by 182W and highly siderophile element abundances of supracrustal rocks from the Nuvvuagittuq Greenstone Belt, Quebec, Canada. Chemical Geology, 2014, 383, 63-75.	3.3	67
54	Comparative Sr–Nd–Hf–Os–Pb isotope systematics of xenolithic peridotites from Yangyuan, North China Craton: Additional evidence for a Paleoproterozoic age. Chemical Geology, 2012, 332-333, 1-14.	3.3	22

#	Article	IF	CITATIONS
55	Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton. Geochimica Et Cosmochimica Acta, 2011, 75, 3881-3902.	3.9	118
56	Processes controlling highly siderophile element fractionations in xenolithic peridotites and their influence on Os isotopes. Earth and Planetary Science Letters, 2010, 297, 287-297.	4.4	75