Vicente Rubio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6606713/publications.pdf

Version: 2024-02-01

50 7,025 30 45
papers citations h-index g-index

59 59 59 6633 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes and Development, 2001, 15, 2122-2133.	5.9	1,087
2	A Central Regulatory System Largely Controls Transcriptional Activation and Repression Responses to Phosphate Starvation in Arabidopsis. PLoS Genetics, 2010, 6, e1001102.	3.5	583
3	The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes and Development, 2003, 17, 2642-2647.	5.9	403
4	SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14947-14952.	7.1	372
5	Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant Journal, 2000, 24, 559-567.	5.7	366
6	COP1 and ELF3 Control Circadian Function and Photoperiodic Flowering by Regulating GI Stability. Molecular Cell, 2008, 32, 617-630.	9.7	330
7	Light and the E3 ubiquitin ligase <scp>COP</scp> 1/ <scp>SPA</scp> control the protein stability of the <scp>MYB</scp> transcription factors <scp>PAP</scp> 1 and <scp>PAP</scp> 2 involved in anthocyanin accumulation in Arabidopsis. Plant Journal, 2013, 74, 638-651.	5.7	323
8	Plant hormones and nutrient signaling. Plant Molecular Biology, 2009, 69, 361-373.	3.9	290
9	A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. Plant Journal, 1999, 19, 579-589.	5.7	286
10	PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 Is a Plant-Specific SEC12-Related Protein That Enables the Endoplasmic Reticulum Exit of a High-Affinity Phosphate Transporter in Arabidopsis Â[W]. Plant Cell, 2005, 17, 3500-3512.	6.6	285
11	An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant Journal, 2005, 41, 767-778.	5.7	235
12	LZF1/SALT TOLERANCE HOMOLOG3, an <i>Arabidopsis</i> B-Box Protein Involved in Light-Dependent Development and Gene Expression, Undergoes COP1-Mediated Ubiquitination. Plant Cell, 2008, 20, 2324-2338.	6.6	189
13	Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes and Development, 2004, 18, 2172-2181.	5.9	186
14	Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in <i>Arabidopsis</i>	6.6	186
15	N-Terminal Domain–Mediated Homodimerization Is Required for Photoreceptor Activity of Arabidopsis CRYPTOCHROME 1. Plant Cell, 2005, 17, 1569-1584.	6.6	167
16	Mutations atCRE1impair cytokinin-induced repression of phosphate starvation responses inArabidopsis. Plant Journal, 2002, 32, 353-360.	5.7	165
17	Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling deâ€etiolation in darkness. Plant Journal, 2008, 53, 324-335.	5.7	160
18	Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5400-E5409.	7.1	157

#	Article	IF	Citations
19	Novel signals in the regulation of Pi starvation responses in plants: facts and promises. Current Opinion in Plant Biology, 2017, 39, 40-49.	7.1	149
20	Arabidopsis CAND1, an Unmodified CUL1-Interacting Protein, Is Involved in Multiple Developmental Pathways Controlled by Ubiquitin/Proteasome-Mediated Protein Degradation. Plant Cell, 2004, 16, 1870-1882.	6.6	135
21	Identification of Molecular Integrators Shows that Nitrogen Actively Controls the Phosphate Starvation Response in Plants. Plant Cell, 2019, 31, 1171-1184.	6.6	135
22	Arabidopsis COP1/SPA1 Complex and FHY1/FHY3 Associate with Distinct Phosphorylated Forms of Phytochrome A in Balancing Light Signaling. Molecular Cell, 2008, 31, 607-613.	9.7	104
23	COP1 destabilizes DELLA proteins in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13792-13799.	7.1	84
24	ESCRT-III-Associated Protein ALIX Mediates High-Affinity Phosphate Transporter Trafficking to Maintain Phosphate Homeostasis in Arabidopsis. Plant Cell, 2015, 27, 2560-2581.	6.6	81
25	CUL3 ^{BPM} E3 ubiquitin ligases regulate MYC2, MYC3, and MYC4 stability and JA responses. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6205-6215.	7.1	67
26	DET1-mediated degradation of a SAGA-like deubiquitination module controls H2Bub homeostasis. ELife, 2018, 7, .	6.0	63
27	Rheostatic Control of ABA Signaling through HOS15-Mediated OST1 Degradation. Molecular Plant, 2019, 12, 1447-1462.	8.3	58
28	<i>Arabidopsis</i> ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5543-51.	7.1	56
29	Arabidopsis ALIX Regulates Stomatal Aperture and Turnover of Abscisic Acid Receptors. Plant Cell, 2019, 31, 2411-2429.	6.6	40
30	Interallelic complementation at the Arabidopsis CRE1 locus uncovers independent pathways for the proliferation of vascular initials and canonical cytokinin signalling. Plant Journal, 2004, 38, 70-79.	5.7	38
31	Roles of Ubiquitination in the Control of Phosphate Starvation Responses in Plants ^F . Journal of Integrative Plant Biology, 2013, 55, 40-53.	8.5	31
32	Phy Tunes: Phosphorylation Status and Phytochrome-Mediated Signaling. Cell, 2005, 120, 290-292.	28.9	30
33	Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. Molecular Plant, 2017, 10, 791-804.	8.3	30
34	Proteomics identifies ubiquitin–proteasome targets and new roles for chromatin-remodeling in the Arabidopsis response to phosphate starvation. Journal of Proteomics, 2013, 94, 1-22.	2.4	28
35	DET1-mediated COP1 regulation avoids HY5 activity over second-site gene targets to tune plant photomorphogenesis. Molecular Plant, 2021, 14, 963-982.	8.3	27
36	Multifaceted activities of the plant SAGA complex. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194613.	1.9	20

#	Article	IF	CITATIONS
37	The Arabidopsis Iron–Sulfur Protein GRXS17 is a Target of the Ubiquitin E3 Ligases RGLG3 and RGLG4. Plant and Cell Physiology, 2016, 57, 1801-1813.	3.1	16
38	Arabidopsis CRL4 Complexes: Surveying Chromatin States and Gene Expression. Frontiers in Plant Science, 2019, 10, 1095.	3.6	14
39	Standing on the Shoulders of GIGANTEA. Science, 2007, 318, 206-207.	12.6	13
40	Purification of the COP9 Signalosome from Porcine Spleen, Human Cell Lines, and Arabidopsis thaliana Plants. Methods in Enzymology, 2005, 398, 468-481.	1.0	10
41	CONSTITUTIVE PHOTOMORPHOGENIC 1 promotes seed germination by destabilizing RGA-LIKE 2 in Arabidopsis. Plant Physiology, 2022, 189, 1662-1676.	4.8	5
42	Tap Strategy in Arabidopsis Protein Complex Isolation., 0,, 543-556.		4
43	Tandem Affinity Purification of Protein Complexes from Arabidopsis Cell Cultures. Methods in Molecular Biology, 2018, 1794, 297-309.	0.9	4
44	KISS ME DEADLY F-box proteins modulate cytokinin responses by targeting the transcription factor TCP14 for degradation. Plant Physiology, 2021, 185, 1495-1499.	4.8	3
45	THE FUNCTION OF THE COP/DET/FUS PROTEINS IN CONTROLLING PHOTOMORPHOGENESIS: A ROLE FOR REGULATED PROTEOLYSIS., 2006, , 357-378.		3
46	CFI 25 Subunit of Cleavage Factor I is Important for Maintaining the Diversity of $3\hat{E}^1$ UTR Lengths in <i> Arabidopsis thaliana </i> (L.) Heynh Plant and Cell Physiology, 2022, 63, 369-383.	3.1	3
47	Biochemical and Imaging Analysis of ALIX Function in Endosomal Trafficking of Arabidopsis Protein Cargoes. Methods in Molecular Biology, 2020, 2177, 49-58.	0.9	2
48	The dark side of clock-controlled flowering. F1000 Biology Reports, 2009, 1, 57.	4.0	0
49	Correction to: ESCRT-III-Associated Protein ALIX Mediates High-Affinity Phosphate Transporter Trafficking to Maintain Phosphate Homeostasis in Arabidopsis. Plant Cell, 2022, , .	6.6	0
50	Correction to: Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in <i>Arabidopsis</i> Plant Cell, 2022, , .	6.6	0