Jinsong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6605995/publications.pdf Version: 2024-02-01

ΙΝΙSONG ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Long noncoding RNA ELDR promotes cell cycle progression in normal oral keratinocytes through induction of a CTCF-FOXM1-AURKA signaling axis. Journal of Biological Chemistry, 2022, 298, 101895.	3.4	5
2	Antihyperlipidemic Activity of Gut-Restricted LXR Inverse Agonists. ACS Chemical Biology, 2022, , .	3.4	5
3	Investigating the Molecular Mechanisms Driving 7α,25â€dihydroxycholesterolâ€GPR183â€Induced Hypersensitivity. FASEB Journal, 2022, 36, .	0.5	0
4	Computational Modeling of Gene-Specific Transcriptional Repression, Activation and Chromatin Interactions in Leukemogenesis by LASSO-Regularized Logistic Regression. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 2109-2122.	3.0	6
5	Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice. Npj Aging and Mechanisms of Disease, 2021, 7, 23.	4.5	18
6	A C terminus–dependent conformational change is required for HDAC3 activation by nuclear receptor corepressors. Journal of Biological Chemistry, 2021, 297, 101192.	3.4	4
7	Adropin transgenesis improves recognition memory in diet-induced obese LDLR-deficient C57BL/6J mice. Peptides, 2021, 146, 170678.	2.4	4
8	Pleiotropic actions of IP6K1 mediate hepatic metabolic dysfunction to promote nonalcoholic fatty liver disease and steatohepatitis. Molecular Metabolism, 2021, 54, 101364.	6.5	9
9	Hepatocyte expression of the micropeptide adropin regulates the liver fasting response and is enhanced by caloric restriction. Journal of Biological Chemistry, 2020, 295, 13753-13768.	3.4	19
10	<i>Chi3l1</i> /YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer's disease pathogenesis. Science Translational Medicine, 2020, 12, .	12.4	98
11	Histone deacetylase 3 preferentially binds and collaborates with the transcription factor RUNX1 to repress AML1–ETO–dependent transcription in t(8;21) AML. Journal of Biological Chemistry, 2020, 295, 4212-4223.	3.4	10
12	The transcriptional corepressor CBFA2T3 inhibits all-trans-retinoic acid–induced myeloid gene expression and differentiation in acute myeloid leukemia. Journal of Biological Chemistry, 2020, 295, 8887-8900.	3.4	9
13	GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents. Journal of Clinical Investigation, 2020, 130, 2587-2592.	8.2	62
14	REV-ERBα mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. ELife, 2020, 9, .	6.0	42
15	Low plasma adropin concentrations increase risks of weight gain and metabolic dysregulation in response to a high-sugar diet in male nonhuman primates. Journal of Biological Chemistry, 2019, 294, 9706-9719.	3.4	45
16	Pharmacological activation of the nuclear receptor REV-ERB reverses cognitive deficits and reduces amyloid-β burden in a mouse model of Alzheimer's disease. PLoS ONE, 2019, 14, e0215004.	2.5	19
17	Circadian clock protein Rev-erbl \hat{i} + regulates neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5102-5107.	7.1	164
18	Myeloid translocation gene CBFA2T3 directs a relapse gene program and determines patient-specific outcomes in AML. Blood Advances, 2019, 3, 1379-1393.	5.2	15

JINSONG ZHANG

#	Article	IF	CITATIONS
19	LXR-inverse agonism stimulates immune-mediated tumor destruction by enhancing CD8 T-cell activity in triple negative breast cancer. Scientific Reports, 2019, 9, 19530.	3.3	37
20	Adropin: An endocrine link between the biological clock and cholesterol homeostasis. Molecular Metabolism, 2018, 8, 51-64.	6.5	69
21	Rev-Erb co-regulates muscle regeneration via tethered interaction with the NF-Y cistrome. Molecular Metabolism, 2017, 6, 703-714.	6.5	27
22	Rev-erb regulation of cholesterologenesis. Biochemical Pharmacology, 2017, 131, 68-77.	4.4	25
23	EZH2-, CHD4-, and IDH-linked epigenetic perturbation and its association with survival in glioma patients. Journal of Molecular Cell Biology, 2017, 9, 477-488.	3.3	48
24	Transcriptional and Genomic Control of Stem Cells in Development and Cancer. Stem Cells International, 2017, 2017, 1-2.	2.5	0
25	Emerging Roles of MTG16 in Cell-Fate Control of Hematopoietic Stem Cells and Cancer. Stem Cells International, 2017, 2017, 1-12.	2.5	20
26	New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins. Frontiers in Biology, 2016, 11, 285-304.	0.7	2
27	A Novel CD34/ETO2/Ifngr gene Regulatory Axis Is Implicated in Poor-Prognosis Cases of t(8;21) AML. Blood, 2016, 128, 1691-1691.	1.4	0
28	Repeated microendoscopic discectomy for recurrent lumbar disk herniation. Clinics, 2015, 70, 120-125.	1.5	19
29	The Optimal Corepressor Function of Nuclear Receptor Corepressor (NCoR) for Peroxisome Proliferator-activated Receptor γ Requires G Protein Pathway Suppressor 2. Journal of Biological Chemistry, 2015, 290, 3666-3679.	3.4	20
30	Differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways. Nucleic Acids Research, 2014, 42, 137-152.	14.5	38
31	Tumor Suppressor FOXO1 Serves As a Critical Oncogenic Mediator in AML1-ETO Leukemia. Blood, 2014, 124, 264-264.	1.4	1
32	Effects of different LAD-blocked sites on the development of acute myocardial infarction and malignant arrhythmia in a swine model. Journal of Thoracic Disease, 2014, 6, 1271-7.	1.4	12
33	Nuclear receptor corepressor complexes in cancer: mechanism, function and regulation. American Journal of Clinical and Experimental Urology, 2014, 2, 169-87.	0.4	38
34	The novel interaction between microspherule protein Msp58 and ubiquitin E3 ligase EDD regulates cell cycle progression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 21-32.	4.1	18
35	A TAF4 coactivator function for E proteins that involves enhanced TFIID binding. Genes and Development, 2013, 27, 1596-1609.	5.9	30
36	DNA Homologous Recombination Factor SFR1 Physically and Functionally Interacts with Estrogen Receptor Alpha. PLoS ONE, 2013, 8, e68075.	2.5	4

JINSONG ZHANG

#	Article	IF	CITATIONS
37	Regulated Clearance of Histone Deacetylase 3 Protects Independent Formation of Nuclear Receptor Corepressor Complexes. Journal of Biological Chemistry, 2012, 287, 12111-12120.	3.4	19
38	The Leukemogenicity of AML1-ETO Is Dependent on Site-Specific Lysine Acetylation. Science, 2011, 333, 765-769.	12.6	200
39	LMO7 Mediates Cell-Specific Activation of the Rho-Myocardin-Related Transcription Factor-Serum Response Factor Pathway and Plays an Important Role in Breast Cancer Cell Migration. Molecular and Cellular Biology, 2011, 31, 3223-3240.	2.3	52
40	Identification of ASF/SF2 as a Critical, Allele-Specific Effector of the Cyclin D1b Oncogene. Cancer Research, 2010, 70, 3975-3984.	0.9	71
41	Multivalent Binding of the ETO Corepressor to E Proteins Facilitates Dual Repression Controls Targeting Chromatin and the Basal Transcription Machinery. Molecular and Cellular Biology, 2009, 29, 2644-2657.	2.3	25
42	Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer. BMC Cancer, 2008, 8, 158.	2.6	53
43	The acute myeloid leukemia fusion protein AML1-ETO targets E proteins via a paired amphipathic helix-like TBP-associated factor homology domain. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10242-10247.	7.1	40
44	E Protein Silencing by the Leukemogenic AML1-ETO Fusion Protein. Science, 2004, 305, 1286-1289.	12.6	183
45	The N-CoR-HDAC3 Nuclear Receptor Corepressor Complex Inhibits the JNK Pathway through the Integral Subunit GPS2. Molecular Cell, 2002, 9, 611-623.	9.7	380
46	Oligomerization of ETO Is Obligatory for Corepressor Interaction. Molecular and Cellular Biology, 2001, 21, 156-163.	2.3	100
47	The Mechanism of Action of Thyroid Hormones. Annual Review of Physiology, 2000, 62, 439-466.	13.1	605
48	Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes and Development, 2000, 14, 45-54.	5.9	281
49	A Novel Role for Helix 12 of Retinoid X Receptor in Regulating Repression. Molecular and Cellular Biology, 1999, 19, 6448-6457.	2.3	102
50	Aberrant Recruitment of the Nuclear Receptor Corepressor-Histone Deacetylase Complex by the Acute Myeloid Leukemia Fusion Partner ETO. Molecular and Cellular Biology, 1998, 18, 7185-7191.	2.3	466
51	DNA-independent and DNA-dependent Mechanisms Regulate the Differential Heterodimerization of the Isoforms of the Thyroid Hormone Receptor with Retinoid X Receptor. Journal of Biological Chemistry, 1996, 271, 28199-28205.	3.4	34