
Ana Belen Jorge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6605885/publications.pdf

Version: 2024-02-01

ANA RELEN LORCE

#	Article	IF	CITATIONS
1	Efficient harvesting and storage of solar energy of an all-vanadium solar redox flow battery with a MoS ₂ @TiO ₂ photoelectrode. Journal of Materials Chemistry A, 2022, 10, 10484-10492.	10.3	11
2	Sustainable electrodes for the next generation of redox flow batteries. JPhys Materials, 2022, 5, 024004.	4.2	6
3	Full Lignin-Derived Electrospun Carbon Materials as Electrodes for Supercapacitors. Frontiers in Materials, 2022, 9, .	2.4	8
4	Performance and potential of porous carbons derived of electrospun metal–organic frameworks for supercapacitor applications. Journal of Energy Chemistry, 2022, 73, 348-353.	12.9	10
5	Photoelectrochemical imaging system with high spatiotemporal resolution for visualizing dynamic cellular responses. Biosensors and Bioelectronics, 2021, 180, 113121.	10.1	23
6	Lignin-derived electrospun freestanding carbons as alternative electrodes for redox flow batteries. Carbon, 2020, 157, 847-856.	10.3	37
7	3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902494.	19.5	97
8	The role of carbon dots – derived underlayer in hematite photoanodes. Nanoscale, 2020, 12, 20220-20229.	5.6	9
9	Electrocatalysis: 3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis (Adv.) Tj ETQq1 1	0.784314.ggBT	/Qyerlock 10
10	Nitrogen-Doped Carbon Dots/TiO ₂ Nanoparticle Composites for Photoelectrochemical Water Oxidation. ACS Applied Nano Materials, 2020, 3, 3371-3381.	5.0	71
11	Monitoring Hydrogen Evolution Reaction Intermediates of Transition Metal Dichalcogenides via Operando Raman Spectroscopy. Advanced Functional Materials, 2020, 30, 2003035.	14.9	64
12	Heat Diffusionâ€Induced Gradient Energy Level in Multishell Bisulfides for Highly Efficient Photocatalytic Hydrogen Production. Advanced Energy Materials, 2020, 10, 2001575.	19.5	57
13	Manipulating the Optical Properties of Carbon Dots by Fineâ€Tuning their Structural Features. ChemSusChem, 2019, 12, 4432-4441.	6.8	33
14	Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density. Chemical Science, 2019, 10, 2980-2988.	7.4	88
15	High-power nitrided TiO2 carbon felt as the negative electrode for all-vanadium redox flow batteries. Carbon, 2019, 148, 91-104.	10.3	51
16	Edge-rich MoS2 grown on edge-oriented three-dimensional graphene glass for high-performance hydrogen evolution. Nano Energy, 2019, 57, 388-397.	16.0	98
17	Freestanding Nonâ€Precious Metal Electrocatalysts for Oxygen Evolution and Reduction Reactions. ChemElectroChem, 2018, 5, 1786-1804.	3.4	32
18	Synergistic relationship between the three-dimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials. Sustainable Energy and Fuels, 2018, 2, 772-785.	4.9	53

ANA BELEN JORGE

#	Article	IF	CITATIONS
19	Biomass-derived electrodes for flexible supercapacitors. Current Opinion in Green and Sustainable Chemistry, 2018, 9, 18-24.	5.9	64
20	One-Step Synthesis, Structure, and Band Gap Properties of SnO ₂ Nanoparticles Made by a Low Temperature Nonaqueous Sol–Gel Technique. ACS Omega, 2018, 3, 13227-13238.	3.5	83
21	Correlating electrochemical impedance with hierarchical structure for porous carbon-based supercapacitors using a truncated transmission line model. Electrochimica Acta, 2018, 284, 597-608.	5.2	36
22	Carbon Nitride Materials as Efficient Catalyst Supports for Proton Exchange Membrane Water Electrolyzers. Nanomaterials, 2018, 8, 432.	4.1	17
23	Integration of supercapacitors into printed circuit boards. Journal of Energy Storage, 2018, 19, 28-34.	8.1	14
24	New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors. Journal of Energy Storage, 2018, 19, 337-347.	8.1	42
25	High Performance Nâ€Doped Carbon Electrodes Obtained via Hydrothermal Carbonization of Macroalgae for Supercapacitor Applications. ChemElectroChem, 2018, 5, 2686-2693.	3.4	99
26	Correlation between the proton conductivity and diffusion coefficient of sulfonic acid functionalized chitosan and Nafion composites via impedance spectroscopy measurements. Ionics, 2017, 23, 2221-2227.	2.4	2
27	Carbon nitrides: synthesis and characterization of a new class of functional materials. Physical Chemistry Chemical Physics, 2017, 19, 15613-15638.	2.8	339
28	Use of <i>Shewanella oneidensis</i> for Energy Conversion in Microbial Fuel Cells. Macromolecular Chemistry and Physics, 2016, 217, 1431-1438.	2.2	5
29	Fe–N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions. ACS Nano, 2016, 10, 5922-5932.	14.6	403
30	Graphitic Carbon Nitride-Graphene Hybrid Nanostructure as a Catalyst Support for Polymer Electrolyte Membrane Fuel Cells. ECS Transactions, 2016, 75, 885-897.	0.5	8
31	Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers. Electrochimica Acta, 2016, 222, 44-57.	5.2	97
32	Influence of sol counter-ions on the anatase-to-rutile phase transformation and microstructure of nanocrystalline TiO ₂ . CrystEngComm, 2015, 17, 1813-1825.	2.6	11
33	Influence of sol counter-ions on the visible light induced photocatalytic behaviour of TiO ₂ nanoparticles. Catalysis Science and Technology, 2014, 4, 2134-2146.	4.1	26
34	Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells. Journal of Physical Chemistry C, 2014, 118, 6831-6838.	3.1	63
35	H ₂ and O ₂ Evolution from Water Half-Splitting Reactions by Graphitic Carbon Nitride Materials. Journal of Physical Chemistry C, 2013, 117, 7178-7185.	3.1	406
36	Development of Graphitic-Carbon Nitride Materials as Catalyst Supports for Polymer Electrolyte Fuel Cells. ECS Transactions, 2013, 58, 1767-1778.	0.5	11