Ana Belen Jorge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6605885/publications.pdf

Version: 2024-02-01

36 papers

2,486 citations

304743

22

h-index

315739 38 g-index

38 all docs 38 docs citations

38 times ranked 4500 citing authors

#	Article	IF	CITATIONS
1	H ₂ and O ₂ Evolution from Water Half-Splitting Reactions by Graphitic Carbon Nitride Materials. Journal of Physical Chemistry C, 2013, 117, 7178-7185.	3.1	406
2	Fe–N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions. ACS Nano, 2016, 10, 5922-5932.	14.6	403
3	Carbon nitrides: synthesis and characterization of a new class of functional materials. Physical Chemistry Chemical Physics, 2017, 19, 15613-15638.	2.8	339
4	High Performance Nâ€Doped Carbon Electrodes Obtained via Hydrothermal Carbonization of Macroalgae for Supercapacitor Applications. ChemElectroChem, 2018, 5, 2686-2693.	3.4	99
5	Edge-rich MoS2 grown on edge-oriented three-dimensional graphene glass for high-performance hydrogen evolution. Nano Energy, 2019, 57, 388-397.	16.0	98
6	Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers. Electrochimica Acta, 2016, 222, 44-57.	5.2	97
7	3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902494.	19.5	97
8	Free-standing supercapacitors from Kraft lignin nanofibers with remarkable volumetric energy density. Chemical Science, 2019, 10, 2980-2988.	7.4	88
9	One-Step Synthesis, Structure, and Band Gap Properties of SnO ₂ Nanoparticles Made by a Low Temperature Nonaqueous Sol–Gel Technique. ACS Omega, 2018, 3, 13227-13238.	3. 5	83
10	Nitrogen-Doped Carbon Dots/TiO ₂ Nanoparticle Composites for Photoelectrochemical Water Oxidation. ACS Applied Nano Materials, 2020, 3, 3371-3381.	5.0	71
11	Biomass-derived electrodes for flexible supercapacitors. Current Opinion in Green and Sustainable Chemistry, 2018, 9, 18-24.	5.9	64
12	Monitoring Hydrogen Evolution Reaction Intermediates of Transition Metal Dichalcogenides via Operando Raman Spectroscopy. Advanced Functional Materials, 2020, 30, 2003035.	14.9	64
13	Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells. Journal of Physical Chemistry C, 2014, 118, 6831-6838.	3.1	63
14	Heat Diffusionâ€Induced Gradient Energy Level in Multishell Bisulfides for Highly Efficient Photocatalytic Hydrogen Production. Advanced Energy Materials, 2020, 10, 2001575.	19.5	57
15	Synergistic relationship between the three-dimensional nanostructure and electrochemical performance in biocarbon supercapacitor electrode materials. Sustainable Energy and Fuels, 2018, 2, 772-785.	4.9	53
16	High-power nitrided TiO2 carbon felt as the negative electrode for all-vanadium redox flow batteries. Carbon, 2019, 148, 91-104.	10.3	51
17	New insights into the electrochemical behaviour of porous carbon electrodes for supercapacitors. Journal of Energy Storage, 2018, 19, 337-347.	8.1	42
18	Lignin-derived electrospun freestanding carbons as alternative electrodes for redox flow batteries. Carbon, 2020, 157, 847-856.	10.3	37

#	Article	IF	Citations
19	Correlating electrochemical impedance with hierarchical structure for porous carbon-based supercapacitors using a truncated transmission line model. Electrochimica Acta, 2018, 284, 597-608.	5.2	36
20	Manipulating the Optical Properties of Carbon Dots by Fine‶uning their Structural Features. ChemSusChem, 2019, 12, 4432-4441.	6.8	33
21	Freestanding Nonâ€Precious Metal Electrocatalysts for Oxygen Evolution and Reduction Reactions. ChemElectroChem, 2018, 5, 1786-1804.	3.4	32
22	Influence of sol counter-ions on the visible light induced photocatalytic behaviour of TiO ₂ nanoparticles. Catalysis Science and Technology, 2014, 4, 2134-2146.	4.1	26
23	Photoelectrochemical imaging system with high spatiotemporal resolution for visualizing dynamic cellular responses. Biosensors and Bioelectronics, 2021, 180, 113121.	10.1	23
24	Carbon Nitride Materials as Efficient Catalyst Supports for Proton Exchange Membrane Water Electrolyzers. Nanomaterials, 2018, 8, 432.	4.1	17
25	Integration of supercapacitors into printed circuit boards. Journal of Energy Storage, 2018, 19, 28-34.	8.1	14
26	Development of Graphitic-Carbon Nitride Materials as Catalyst Supports for Polymer Electrolyte Fuel Cells. ECS Transactions, 2013, 58, 1767-1778.	0.5	11
27	Influence of sol counter-ions on the anatase-to-rutile phase transformation and microstructure of nanocrystalline TiO ₂ . CrystEngComm, 2015, 17, 1813-1825.	2.6	11
28	Efficient harvesting and storage of solar energy of an all-vanadium solar redox flow battery with a MoS ₂ @TiO ₂ photoelectrode. Journal of Materials Chemistry A, 2022, 10, 10484-10492.	10.3	11
29	Performance and potential of porous carbons derived of electrospun metal–organic frameworks for supercapacitor applications. Journal of Energy Chemistry, 2022, 73, 348-353.	12.9	10
30	The role of carbon dots – derived underlayer in hematite photoanodes. Nanoscale, 2020, 12, 20220-20229.	5.6	9
31	Graphitic Carbon Nitride-Graphene Hybrid Nanostructure as a Catalyst Support for Polymer Electrolyte Membrane Fuel Cells. ECS Transactions, 2016, 75, 885-897.	0.5	8
32	Full Lignin-Derived Electrospun Carbon Materials as Electrodes for Supercapacitors. Frontiers in Materials, 2022, 9, .	2.4	8
33	Sustainable electrodes for the next generation of redox flow batteries. JPhys Materials, 2022, 5, 024004.	4.2	6
34	Use of <i>Shewanella oneidensis</i> for Energy Conversion in Microbial Fuel Cells. Macromolecular Chemistry and Physics, 2016, 217, 1431-1438.	2.2	5
35	Electrocatalysis: 3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis (Adv.) Tj ETQq1 1 0.78	4314.rgBT 	Overlock 10
36	Correlation between the proton conductivity and diffusion coefficient of sulfonic acid functionalized chitosan and Nafion composites via impedance spectroscopy measurements. Ionics, 2017, 23, 2221-2227.	2.4	2