Sotirios A Tsaftaris

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/6604653/publications.pdf
Version: 2024-02-01

2 Leaf segmentation in plant phenotyping: a collation study. Machine Vision and Applications, 2016, 27,
Multimodal MR Synthesis via Modality-Invariant Latent Representation. IEEE Transactions on Medical
Imaging, 2018, 37, 803-814.

6 Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M\&Ms Challenge. IEEE Transactions on Medical Imaging, 2021, 40, 3543-3554.

```
7 Anomalous video event detection using spatiotemporal context. Computer Vision and Image
```

$\begin{array}{ll} & \text { Anomalous video event detection using } \\ \text { Understanding, 2011, 115, 323-333. }\end{array}$
8 Machine Learning for Plant Phenotyping Needs Image Processing. Trends in Plant Science, 2016, 21, 989-991.
$9 \quad$ Disentangled representation learning in cardiac image analysis. Medical Image Analysis, 2019, 58, 101535. $\quad 11.6 \quad 105$10 Image-based plant phenotyping with incremental learning and active contours. Ecological Informatics,5.2
6

12 Adversarial Image Synthesis for Unpaired Multi-modal Cardiac Data. Lecture Notes in Computer
1.3

96 Science, 2017, , 3-13.
.
13 Chronic Manifestation of Postreperfusion Intramyocardial Hemorrhage as Regional Iron Deposition.
$2.6 \quad 79$
Circulation: Cardiovascular Imaging, 2013, 6, 218-228.

Phenoâ€ Eeep Counter: a unified and versatile deep learning architecture for leaf counting. Plant
5.7

72 Journal, 2018, 96, 880-890.

DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis.
Information Fusion, 2021, 67, 147-160.
19.1

62

Factorised Spatial Representation Learning: Application in Semi-supervised Myocardial Segmentation.	$1.3-37$
Lecture Notes in Computer Science, 2018, $490-498$.	

24 ARIGAN: Synthetic Arabidopsis Plants Using Generative Adversarial Network. , 2017, , 35
Citizen crowds and experts: observer variability in image-based plant phenotyping. Plant Methods, 2018, 14, 12.

```
27 How can DNA computing be applied to digital signal processing?. IEEE Signal Processing Magazine,
2004, 21, 57-61.Detecting Myocardial Ischemia at Rest With Cardiac Phaseâ€"Resolved Blood Oxygen Levelâ€"Dependent
37 Leaf Counting Without Annotations Using Adversarial Unsupervised Domain Adaptation. , 2019, , . ..... 21
38 Sharing the Right Data Right: A Symbiosis with Machine Learning. Trends in Plant Science, 2019, 24, ..... 8.8 ..... 21
39 Learning to synthesise the ageing brain without longitudinal data. Medical Image Analysis, 2021, 73, 11.6 ..... 20
40 Joint source-channel coding for wireless object-based video communications utilizing data hiding. IEEE Transactions on Image Processing, 2006, 15, 2158-2169.
41 Local feature extraction for video copy detection in a database. , 2008, , . ..... 19
Semi-supervised Meta-learning with Disentanglement for Domain-Generalised Medical Image ..... 1.3 ..... 19
Segmentation. Lecture Notes in Computer Science, 2021, , 307-317.Unsupervised Myocardial Segmentation for Cardiac BOLD. IEEE Transactions on Medical Imaging, 2017,\begin{tabular}{l|l} 
& Unsupervised M \\
43 & \(36,2228-2238\).
\end{tabular}
8.9 ..... 18
Ischemic extent as a biomarker for characterizing severity of coronary artery stenosis with bloodoxygenâ€sensitive MRI. Journal of Magnetic Resonance Imaging, 2012, 35, 1338-1348.
Life sciences - DNA computing from a signal processing viewpoint. IEEE Signal Processing Magazine,2004, 21, 100-106.
47 The Generalized Complex Kernel Least-Mean-Square Algorithm. IEEE Transactions on Signal Processing,
2019, 67, 5213-5222.
5.3 ..... 15
Artifactâ€reduced twoâ€dimensional cine steady state free precession for myocardial bloodâ€•3.414
oxygenâ€levelâ€dependent imaging. Journal of Magnetic Resonance Imaging, 2010, 31, 863-871.Arterial \(\mathrm{CO}<\mathrm{sub}>2</\) sub> as a Potent Coronary Vasodilator: A Preclinical PET/MR Validation Study5.014with Implications for Cardiac Stress Testing. Journal of Nuclear Medicine, 2017, 58, 953-960.Unsupervised Myocardial Segmentation for Cardiac MRI. Lecture Notes in Computer Science, 2015, ,1.312
12-20.
Accurate needle-free assessment of myocardial oxygenation for ischemic heart disease in canines
using magnetic resonance imaging. Science Translational Medicine, 2019, 11, .12.412Dictionary-Driven Ischemia Detection From Cardiac Phase-Resolved Myocardial BOLD MRI at Rest. IEEE
The significance of image compression in plant phenotyping applications. Functional Plant Biology,2.110
Disentangled Representations for Domain-Generalized Cardiac Segmentation. Lecture Notes in
Computer Science, 2021, 187-195. \(\quad 1.3\)
59 Application-aware image compression for low cost and distributed plant phenotyping. , 2013, , . ..... 6
\begin{tabular}{|c|c|c|c|}
\hline 60 & Temporal Consistency Objectives Regularize the Learning of Disentangled Representations. Lecture Notes in Computer Science, 2019, , 11-19. & 1.3 & 6 \\
\hline 61 & Multimodal Cardiac Segmentation Using Disentangled Representation Learning. Lecture Notes in Computer Science, 2020, , 128-137. & 1.3 & 6 \\
\hline
\end{tabular}

64 Unsupervised Rotation Factorization in Restricted Boltzmann Machines. IEEE Transactions on Image
Processing, 2020, 29, 2166-2175.

\(9.8 \quad 5\)
65 Max-Fusion U-Net for Multi-modal Pathology Segmentation with Attention and Dynamic Resampling. Lecture Notes in Computer Science, 2020, , 68-81.
Retrieval Efficiency of DNA-Based Databases of Digital Signals. IEEE Transactions on Nanobioscience,
2009, 8, 259-270. \(\quad 3.3\)

79 Data-driven feature learning for myocardial registration and segmentation. , 2021, , 185-225.
```

