
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603926/publications.pdf Version: 2024-02-01

FOWADO RAKED

#	Article	IF	CITATIONS
1	Organic Biogeochemistry in West Mata, NE Lau Hydrothermal Vent Fields. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009481.	2.5	0
2	Enhanced hydrothermal activity on an ultraslow-spreading supersegment with a seismically detected melting anomaly. Marine Geology, 2020, 430, 106335.	2.1	5
3	Dissolved Gas and Metal Composition of Hydrothermal Plumes From a 2008 Submarine Eruption on the Northeast Lau Spreading Center. Frontiers in Marine Science, 2020, 7, .	2.5	7
4	The NE Lau Basin: Widespread and Abundant Hydrothermal Venting in the Back-Arc Region Behind a Superfast Subduction Zone. Frontiers in Marine Science, 2019, 6, .	2.5	18
5	Patterns of Fine Ash Dispersal Related to Volcanic Activity at West Mata Volcano, NE Lau Basin. Frontiers in Marine Science, 2019, 6, .	2.5	4
6	Posteruption Enhancement of Hydrothermal Activity: A 33‥ear, Multieruption Time Series at Axial Seamount (Juan de Fuca Ridge). Geochemistry, Geophysics, Geosystems, 2019, 20, 814-828.	2.5	9
7	A Recent Volcanic Eruption Discovered on the Central Mariana Back-Arc Spreading Center. Frontiers in Earth Science, 2018, 6, .	1.8	22
8	Chemical Fluxes From a Recently Erupted Shallow Submarine Volcano on the Mariana Arc. Geochemistry, Geophysics, Geosystems, 2018, 19, 1660-1673.	2.5	13
9	Widespread tectonic extension at the Central Indian Ridge between 8°S and 18°S. Gondwana Research, 2017, 45, 163-179.	6.0	23
10	Exploring the ocean for hydrothermal venting: New techniques, new discoveries, new insights. Ore Geology Reviews, 2017, 86, 55-69.	2.7	44
11	Geological interpretation of volcanism and segmentation of the <scp>M</scp> ariana backâ€arc spreading center between 12.7° <scp>N</scp> and 18.3° <scp>N</scp> . Geochemistry, Geophysics, Geosystems, 2017, 18, 2240-2274.	2.5	25
12	Hydrothermal plume mapping as a prospecting tool for seafloor sulfide deposits: a case study at the Zouyu-1 and Zouyu-2 hydrothermal fields in the southern Mid-Atlantic Ridge. Marine Geophysical Researches, 2017, 38, 3-16.	1.2	21
13	The Effect of Arc Proximity on Hydrothermal Activity Along Spreading Centers: New Evidence From the Mariana Back Arc (12.7°N–18.3°N). Geochemistry, Geophysics, Geosystems, 2017, 18, 4211-4228.	2.5	15
14	Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island. Scientific Reports, 2016, 6, 25686.	3.3	35
15	Hydrothermal Plumes. Encyclopedia of Earth Sciences Series, 2016, , 335-339.	0.1	3
16	How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. Earth and Planetary Science Letters, 2016, 449, 186-196.	4.4	92
17	First hydrothermal discoveries on the <scp>A</scp> ustralianâ€ <scp>A</scp> ntarctic <scp>R</scp> idge: Discharge sites, plume chemistry, and vent organisms. Geochemistry, Geophysics, Geosystems, 2015, 16, 3061-3075.	2.5	18
18	Longâ€ŧerm explosive degassing and debris flow activity at West Mata submarine volcano. Geophysical Research Letters, 2015, 42, 1480-1487.	4.0	25

#	Article	IF	CITATIONS
19	Helium isotope, <scp>C</scp> / ³ <scp>H</scp> e, and <scp>B</scp> aâ€ <scp>N</scp> bâ€ <scp>T</scp> i signatures in the northern <scp>L</scp> au <scp>B</scp> asin: Distinguishing arc, backâ€arc, and hotspot affinities. Geochemistry, Geophysics, Geosystems, 2015, 16, 1133-1155.	2.5	50
20	The NOAA Vents Program 1983 to 2013: Thirty Years of Ocean Exploration and Research. Oceanography, 2015, 28, 160-173.	1.0	27
21	Where are the undiscovered hydrothermal vents on oceanic spreading ridges?. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 121, 202-212.	1.4	141
22	Molten Sulfur Lakes of Intraoceanic Arc Volcanoes. Advances in Volcanology, 2015, , 261-288.	1.1	21
23	Tectonic and magmatic control of hydrothermal activity along the slowâ€spreading Central Indian Ridge, 8°S–17°S. Geochemistry, Geophysics, Geosystems, 2014, 15, 2011-2020.	2.5	28
24	The Anatomy of a Buried Submarine Hydrothermal System, Clark Volcano, Kermadec Arc, New Zealand. Economic Geology, 2014, 109, 2261-2292.	3.8	38
25	Correlated patterns in hydrothermal plume distribution and apparent magmatic budget along 2500 km of the Southeast Indian Ridge. Geochemistry, Geophysics, Geosystems, 2014, 15, 3198-3211.	2.5	11
26	Bathymetric influence on dissolved methane in hydrothermal plumes revealed by concentration and stable carbon isotope measurements at newly discovered venting sites on the Central Indian Ridge (11–13°S). Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 91, 17-26.	1.4	11
27	Eruptive modes and hiatus of volcanism at West Mata seamount, NE Lau basin: 1996-2012. Geochemistry, Geophysics, Geosystems, 2014, 15, 4093-4115.	2.5	26
28	Understanding a submarine eruption through time series hydrothermal plume sampling of dissolved and particulate constituents: <scp>W</scp> est <scp>M</scp> ata, 2008–2012. Geochemistry, Geophysics, Geosystems, 2014, 15, 4631-4650.	2.5	31
29	Hydrothermal Plumes. , 2014, , 1-7.		0
30	An authoritative global database for active submarine hydrothermal vent fields. Geochemistry, Geophysics, Geosystems, 2013, 14, 4892-4905.	2.5	181
31	High-Resolution Hydrothermal Mapping of Brothers Caldera, Kermadec Arc. Economic Geology, 2012, 107, 1583-1593.	3.8	38
32	Submarine Magmatic-Hydrothermal Systems at the Monowai Volcanic Center, Kermadec Arc. Economic Geology, 2012, 107, 1669-1694.	3.8	33
33	Geology, Hydrothermal Activity, and Sea-Floor Massive Sulfide Mineralization at the Rumble II West Mafic Caldera. Economic Geology, 2012, 107, 1649-1668.	3.8	21
34	Hydrothermal plumes over the Carlsberg Ridge, Indian Ocean. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	32
35	Flux measurements of explosive degassing using a yearlong hydroacoustic record at an erupting submarine volcano. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	17
36	Tectonic and magmatic controls on hydrothermal activity in the Woodlark Basin. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	9

#	Article	IF	CITATIONS
37	Hydrothermal Discharge During Submarine Eruptions: The Importance of Detection, Response, and New Technology. Oceanography, 2012, 25, 128-141.	1.0	29
38	Volcanic Eruptions in the Deep Sea. Oceanography, 2012, 25, 142-157.	1.0	112
39	Active hydrothermal discharge on the submarine Aeolian Arc. Journal of Geophysical Research, 2011, 116, .	3.3	33
40	Unique event plumes from a 2008 eruption on the Northeast Lau Spreading Center. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	37
41	Correction to "Active hydrothermal discharge on the submarine Aeolian Arc― Journal of Geophysical Research, 2011, 116, .	3.3	1
42	Active submarine eruption of boninite in the northeastern Lau Basin. Nature Geoscience, 2011, 4, 799-806.	12.9	163
43	Microbial carbon isotope fractionation to produce extraordinarily heavy methane in aging hydrothermal plumes over the southwestern Okinawa Trough. Geochemical Journal, 2010, 44, 477-487.	1.0	19
44	Spotlight: Northwest Rota-1 Seamount. Oceanography, 2010, 23, 182-183.	1.0	3
45	Hydrothermal cooling along the Eastern Lau Spreading Center: No evidence for discharge beyond the neovolcanic zone. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	26
46	Rapid dispersal of a hydrothermal plume by turbulent mixing. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 931-945.	1.4	17
47	Relationships between hydrothermal activity and axial magma chamber distribution, depth, and melt content. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	35
48	Chemistry of hydrothermal plumes above submarine volcanoes of the Mariana Arc. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	62
49	Highâ€resolution surveys along the hot spot–affected Galápagos Spreading Center: 2. Influence of magma supply on volcanic morphology. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	30
50	Eruptionâ€fed particle plumes and volcaniclastic deposits at a submarine volcano: NW Rotaâ€1, Mariana Arc. Journal of Geophysical Research, 2008, 113, .	3.3	36
51	Ocean current and temperature time series at Brothers volcano. Journal of Geophysical Research, 2008, 113, .	3.3	7
52	Highâ€resolution surveys along the hot spot–affected Galápagos Spreading Center: 1. Distribution of hydrothermal activity. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	21
53	Highâ€resolution surveys along the hot spot–affected Gálapagos Spreading Center: 3. Black smoker discoveries and the implications for geological controls on hydrothermal activity. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	22
54	Hydrothermal activity and volcano distribution along the Mariana arc. Journal of Geophysical Research, 2008, 113, .	3.3	107

#	Article	IF	CITATIONS
55	Venting of Acid-Sulfate Fluids in a High-Sulfidation Setting at NW Rota-1 Submarine Volcano on the Mariana Arc. Economic Geology, 2007, 102, 1047-1061.	3.8	76
56	Hydrothermal cooling of midocean ridge axes: Do measured and modeled heat fluxes agree?. Earth and Planetary Science Letters, 2007, 263, 140-150.	4.4	64
57	Submarine hydrothermal activity along the midâ€Kermadec Arc, New Zealand: Largeâ€scale effects on venting. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	97
58	Volcanic Eruptions at East Pacific Rise Near 9°50′N. Eos, 2007, 88, 81.	0.1	37
59	Multiple hydrothermal sources along the south Tonga arc and Valu Fa Ridge. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	46
60	Exploring the Submarine Ring of Fire: Mariana Arc - Western Pacific. Oceanography, 2007, 20, 68-79.	1.0	75
61	Ridge-Hotspot Interactions: What Mid-Ocean Ridges Tell Us About Deep Earth Processes. Oceanography, 2007, 20, 102-115.	1.0	54
62	Hunting for Hydrothermal Vents Along the Galápagos Spreading Center. Oceanography, 2007, 20, 100-107.	1.0	2
63	Methane seepage and its relation to slumping and gas hydrate at the Hikurangi margin, New Zealand. New Zealand Journal of Geology, and Geophysics, 2006, 49, 503-516.	1.8	54
64	Submarine venting of liquid carbon dioxide on a Mariana Arc volcano. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	139
65	Abundant hydrothermal venting along melt-rich and melt-free ridge segments in the Lau back-arc basin. Geophysical Research Letters, 2006, 33, .	4.0	40
66	Hydrothermal exploration of the Fonualei Rift and Spreading Center and the Northeast Lau Spreading Center. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	41
67	Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge: NW Indian Ocean. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	36
68	Opposing trends in crustal thickness and spreading rate along the back-arc Eastern Lau Spreading Center: Implications for controls on ridge morphology, faulting, and hydrothermal activity. Earth and Planetary Science Letters, 2006, 245, 655-672.	4.4	97
69	Long-term eruptive activity at a submarine arc volcano. Nature, 2006, 441, 494-497.	27.8	141
70	A Sea-Floor Spreading Event Captured by Seismometers. Science, 2006, 314, 1920-1922.	12.6	169
71	Vailulu'u Seamount, Samoa: Life and death on an active submarine volcano. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6448-6453.	7.1	81
72	Evolution of a Submarine Magmatic-Hydrothermal System: Brothers Volcano, Southern Kermadec Arc, New Zealand. Economic Geology, 2005, 100, 1097-1133.	3.8	250

#	Article	IF	CITATIONS
73	Methane dynamics in hydrothermal plumes over a superfast spreading center: East Pacific Rise, 27.5°–32.3°S. Journal of Geophysical Research, 2005, 110, .	3.3	15
74	Hydrothermal activity on near-arc sections of back-arc ridges: Results from the Mariana Trough and Lau Basin. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	46
75	Detection of and response to mid-ocean ridge magmatic events: Implications for the subsurface biosphere. Geophysical Monograph Series, 2004, , 227-243.	0.1	15
76	Biological and physical processes in and around Astoria submarine Canyon, Oregon, USA. Journal of Marine Systems, 2004, 50, 21-37.	2.1	98
77	Hydrothermal venting at Vailulu'u Seamount: The smoking end of the Samoan chain. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	28
78	Decay of hydrothermal output following the 1998 seafloor eruption at Axial Volcano: Observations and models. Journal of Geophysical Research, 2004, 109, .	3.3	21
79	Heat flow through a basaltic outcrop on a sedimented young ridge flank. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	58
80	Tectonic/volcanic segmentation and controls on hydrothermal venting along Earth's fastest seafloor spreading system, EPR 27°-32°S. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	20
81	Short-term variations in the distribution of hydrothermal plumes along a superfast spreading center, East Pacific Rise, 27°30′-32°20′S. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	16
82	Explorations of Mariana Arc volcanoes reveal new hydrothermal systems. Eos, 2004, 85, 37.	0.1	58
83	Hydrothermal venting in magma deserts: The ultraslow-spreading Gakkel and Southwest Indian Ridges. Geochemistry, Geophysics, Geosystems, 2004, 5, .	2.5	93
84	Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean. Nature, 2003, 421, 252-256.	27.8	206
85	Ocean currents at Axial Volcano, a northeastern Pacific seamount. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	14
86	Submarine hydrothermal venting on the southern Kermadec volcanic arc front (offshore New) Tj ETQq0 0 0 rgBT 2003, 219, 141-161.	/Overlock 1.3	2 10 Tf 50 227 21
87	Chemically rich and diverse submarine hydrothermal plumes of the southern Kermadec volcanic arc (New Zealand). Geological Society Special Publication, 2003, 219, 119-139.	1.3	34
88	Observations and sampling of an ongoing subsurface eruption of Kavachi volcano, Solomon Islands, May 2000. Geology, 2002, 30, 975.	4.4	34
89	Hydrothermal venting along Earth's fastest spreading center: East Pacific Rise, 27.5°-32.3°. Journal of Geophysical Research, 2002, 107, EPM 2-1-EPM 2-14.	3.3	42
90	Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°-16°E. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-14.	2.5	110

#	Article	IF	CITATIONS
91	Hydrothermal plumes along segments of contrasting magmatic influence, 15°20′-18°30′N, East Pacific Rise: Influence of axial faulting. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	2.5	33
92	Ascending and descending particle flux from hydrothermal plumes at Endeavour Segment, Juan de Fuca Ridge. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48, 1093-1120.	1.4	48
93	Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth and Planetary Science Letters, 2001, 193, 359-369.	4.4	171
94	Prospecting for Hydrothermal Vents Using Moored Current and Temperature Data: Axial Volcano on the Juan de Fuca Ridge, Northeast Pacific*. Journal of Physical Oceanography, 2001, 31, 827-838.	1.7	13
95	Vailulu'u undersea volcano: The New Samoa. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	2.5	39
96	Helium, heat, and the generation of hydrothermal event plumes at mid-ocean ridges. Earth and Planetary Science Letters, 1999, 171, 343-350.	4.4	58
97	Sources and fluxes of hydrothermal heat, chemicals and biology within a segment of the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 1999, 171, 301-317.	4.4	36
98	Interdisciplinary group explores seafloor eruption with remotely operated vehicle. Eos, 1999, 80, 213-222.	0.1	20
99	Evidence for iron and sulfur enrichments in hydrothermal plumes at Axial Volcano following the January-February 1998 eruption. Geophysical Research Letters, 1999, 26, 3649-3652.	4.0	20
100	Anomalous helium and heat signatures associated with the 1998 Axial Volcano Event, Juan de Fuca Ridge. Geophysical Research Letters, 1999, 26, 3449-3452.	4.0	14
101	In situ observations of the onset of hydrothermal discharge during the 1998 Submarine Eruption of Axial Volcano, Juan de Fuca Ridge. Geophysical Research Letters, 1999, 26, 3445-3448.	4.0	40
102	Microbial biomass in the hydrothermal plumes associated with the 1998 Axial Volcano Eruption. Geophysical Research Letters, 1999, 26, 3637-3640.	4.0	16
103	The water-column chemical signature after the 1998 Eruption of Axial Volcano. Geophysical Research Letters, 1999, 26, 3645-3648.	4.0	21
104	Variations in hydrothermal methane and hydrogen concentrations following the 1998 eruption at Axial Volcano. Geophysical Research Letters, 1999, 26, 3453-3456.	4.0	23
105	Hydrothermal activity along the southwest Indian ridge. Nature, 1998, 395, 490-493.	27.8	146
106	Patterns of event and chronic hydrothermal venting following a magmatic intrusion: new perspectives from the 1996 Gorda Ridge eruption. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 2599-2618.	1.4	47
107	Manganese and iron in hydrothermal plumes resulting from the 1996 Gorda Ridge Event. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 2683-2712.	1.4	54
108	Geomicrobial transformation of manganese in Gorda Ridge event plumes. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 2713-2737.	1.4	29

#	Article	IF	CITATIONS
109	Bacterial and viral abundances in hydrothermal event plumes over northern Gorda Ridge. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 2739-2749.	1.4	35
110	Detection of hydrothermal plumes along the Southeast Indian Ridge near the Amsterdam-St. Paul Plateau. Geophysical Research Letters, 1998, 25, 97-100.	4.0	45
111	The rise and fall of the Coaxial hydrothermal site, 1993-1996. Journal of Geophysical Research, 1998, 103, 9791-9806.	3.3	36
112	Tracking the Evolution of a Hydrothermal Event Plume with a RAFOS Neutrally Buoyant Drifter. Science, 1998, 280, 1052-1055.	12.6	35
113	Thermal fluxes associated with the 1993 diking event on the CoAxial segment, Juan de Fuca Ridge: A model for the convective cooling of a dike. Journal of Geophysical Research, 1997, 102, 24887-24902.	3.3	48
114	Hydrothermal methane and manganese variation in the plume over the superfast-spreading southern East Pacific Rise. Geochimica Et Cosmochimica Acta, 1997, 61, 485-500.	3.9	38
115	Chemical plumes from low-temperature hydrothermal venting on the eastern flank of the Juan de Fuca Ridge. Journal of Geophysical Research, 1997, 102, 15433-15446.	3.3	24
116	The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth and Planetary Science Letters, 1996, 142, 137-145.	4.4	135
117	Extensive distribution of hydrothermal plumes along the superfast spreading East Pacific Rise, 13°30′-18°40′S. Journal of Geophysical Research, 1996, 101, 8685-8695.	3.3	49
118	Geological indexes of hydrothermal venting. Journal of Geophysical Research, 1996, 101, 13741-13753.	3.3	13
119	Larvae of benthic invertebrates in hydrothermal vent plumes over Juan de Fuca Ridge. Marine Biology, 1995, 122, 585-596.	1.5	57
120	Characteristics of hydrothermal discharge following a magmatic intrusion. Geological Society Special Publication, 1995, 87, 65-76.	1.3	15
121	Regional setting of hydrothermal activity. Geological Society Special Publication, 1995, 87, 3-15.	1.3	20
122	Initial results of the rapid response to the 1993 CoAxial event: Relationships between hydrothermal and volcanic processes. Geophysical Research Letters, 1995, 22, 143-146.	4.0	115
123	Hydrothermal event plumes from the coaxial seafloor eruption site, Juan de Fuca Ridge. Geophysical Research Letters, 1995, 22, 147-150.	4.0	85
124	Observations of manganese and iron at the CoAxial Seafloor Eruption Site, Juan de Fuca Ridge. Geophysical Research Letters, 1995, 22, 151-154.	4.0	35
125	Variations in water-column ³He/heat ratios associated with the 1993 CoAxial event, Juan de Fuca Ridge. Geophysical Research Letters, 1995, 22, 155-158.	4.0	40
126	Manganese and methane in hydrothermal plumes along the East Pacific Rise, 8°40′ to 11°50′N. Geochin Et Cosmochimica Acta, 1995, 59, 4147-4165.	nica 3.9	62

#	Article	IF	CITATIONS
127	The Effect of Magmatic Activity on Hydrothermal Venting Along the Superfast-Spreading East Pacific Rise. Science, 1995, 269, 1092-1095.	12.6	75
128	A 6-year time series of hydrothermal plumes over the Cleft segment of the Juan de Fuca Ridge. Journal of Geophysical Research, 1994, 99, 4889-4904.	3.3	79
129	In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge. Journal of Geophysical Research, 1994, 99, 4969-4984.	3.3	61
130	Composition and sedimentation of hydrothermal plume particles from North Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research, 1994, 99, 4985-5006.	3.3	114
131	Temporal and spatial variability of hydrothermal manganese and iron at Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research, 1994, 99, 4905-4923.	3.3	77
132	Excess222Rn above the Cleft segment of the Juan de Fuca Ridge. Journal of Geophysical Research, 1994, 99, 5007-5015.	3.3	23
133	A numerical study of local convection in the benthic ocean induced by episodic hydrothermal discharges. Journal of Geophysical Research, 1994, 99, 16065.	3.3	17
134	Structure of two hydrothermal megaplumes. Journal of Geophysical Research, 1994, 99, 20361.	3.3	19
135	A method for quantitatively estimating diffuse and discrete hydrothermal discharge. Earth and Planetary Science Letters, 1993, 118, 235-249.	4.4	76
136	Age estimate for the 1987 megaplume on the southern Juan de Fuca Ridge using excess radon and manganese partitioning. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40, 1559-1567.	1.4	13
137	Chemical and physical diversity of hydrothermal plumes along the East Pacific Rise, 8°45′N to 11°50′N. Geophysical Research Letters, 1993, 20, 2913-2916.	4.0	48
138	Longâ€ŧerm monitoring of hydrothermal heat flux using moored temperature sensors, cleft segment, Juan De Fuca Ridge. Geophysical Research Letters, 1993, 20, 1855-1858.	4.0	16
139	Hydrothermal venting and the apparent magmatic budget of the Juan de Fuca Ridge. Journal of Geophysical Research, 1992, 97, 3443-3456.	3.3	75
140	Tracking the dispersal of hydrothermal plumes from the Juan de Fuca Ridge using suspended matter compositions. Journal of Geophysical Research, 1992, 97, 3457-3468.	3.3	72
141	A fast, high-precision splitter for particle suspensions. Marine Geology, 1992, 108, 247-252.	2.1	7
142	Geology of the northern Cleft segment, Juan de Fuca Ridge: Recent lava flows, sea-floor spreading, and the formation of megaplumes. Geology, 1991, 19, 771.	4.4	101
143	In situ chemical mapping of dissolved iron and manganese in hydrothermal plumes. Nature, 1991, 352, 325-328.	27.8	75
144	Changes in submarine hydrothermal 3He/heat ratios as an indicator of magmatic/tectonic activity. Nature, 1990, 346, 556-558.	27.8	92

#	Article	IF	CITATIONS
145	The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific. Earth and Planetary Science Letters, 1990, 96, 305-318.	4.4	119
146	Hydrothermal venting from the summit of a ridge axis Seamount: Axial Volcano, Juan de Fuca Ridge. Journal of Geophysical Research, 1990, 95, 12843-12854.	3.3	29
147	Distribution and composition of hydrothermal plume particles from the ASHES Vent Field at Axial Volcano, Juan de Fuca Ridge. Journal of Geophysical Research, 1990, 95, 12855-12873.	3.3	75
148	Hydrothermal Plume Prospecting: Hydrographic and Geochemical Techniques. , 1990, , 155-167.		6
149	Hydrography and Geochemistry of Northern Gorda Ridge. , 1990, , 21-29.		7
150	Variable 3He/heat ratios in submarine hydrothermal systems: evidence from two plumes over the Juan de Fuca ridge. Nature, 1989, 337, 161-164.	27.8	139
151	Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge. Journal of Geophysical Research, 1989, 94, 9237-9250.	3.3	187
152	Particle-size distributions within hydrothermal plumes over the Juan de Fuca Ridge. Marine Geology, 1988, 78, 217-226.	2.1	34
153	Settling speeds of sewage sludge in seawater. Environmental Science & Technology, 1988, 22, 1201-1207.	10.0	11
154	Field assessment of sediment trap efficiency under varying flow conditions. Journal of Marine Research, 1988, 46, 573-592.	0.3	220
155	Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth and Planetary Science Letters, 1987, 85, 59-73.	4.4	197
156	Evidence for high-temperature hydrothermal venting on the Gorda Ridge, northeast Pacific Ocean. Deep-sea Research Part A, Oceanographic Research Papers, 1987, 34, 1461-1476.	1.5	34
157	Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature, 1987, 329, 149-151.	27.8	261
158	Seasonal and vertical variations in the elemental composition of suspended and settling particulate matter in Puget Sound, Washington. Estuarine, Coastal and Shelf Science, 1986, 22, 215-239.	2.1	31
159	Contemporary sedimentation processes in and around an active West Coast submarine canyon. Marine Geology, 1986, 71, 15-34.	2.1	85
160	Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume. Nature, 1986, 322, 169-171.	27.8	159
161	Hydrothermal Plume Measurements: A Regional Perspective. Science, 1986, 234, 980-982.	12.6	71
162	Hydrothermal particle plumes over the southern Juan de Fuca Ridge. Nature, 1985, 316, 342-344.	27.8	102

#	Article	IF	CITATIONS
163	Temporal variations in the concentration and settling flux of carbon and phytoplankton pigments in a deep fjordlike estuary. Estuarine, Coastal and Shelf Science, 1985, 21, 859-877.	2.1	29
164	An in situ erosion rate for a fineâ€grained marine sediment. Journal of Geophysical Research, 1984, 89, 6543-6552.	3.3	99
165	Patterns of suspended particle distribution and transport in a large fjordlike estuary. Journal of Geophysical Research, 1984, 89, 6553-6566.	3.3	33
166	The effect of particle size on the light attenuation coefficient of natural suspensions. Journal of Geophysical Research, 1984, 89, 8197-8203.	3.3	293
167	Particle transport processes in a small marine bay. Journal of Geophysical Research, 1983, 88, 9661-9669.	3.3	18
168	An instrument system for the investigation of particle fluxes. Continental Shelf Research, 1983, 1, 425-435.	1.8	50
169	Upwelled spectral radiance distribution in relation to particulate matter in sea water. Boundary-Layer Meteorology, 1980, 18, 287-298.	2.3	59
170	Nimbus-7 Coastal Zone Color Scanner: System Description and Initial Imagery. Science, 1980, 210, 60-63.	12.6	342
171	Processes affecting the distribution and transport of suspended matter in the northeast Gulf of Alaska. Deep-sea Research Part A, Oceanographic Research Papers, 1979, 26, 445-464.	1.5	42
172	Chemical Composition, Size Distribution and Particle Morphology of Suspended Particulate Matter at DOMES Sites A, B, and C: Relationships with Local Sediment Composition. , 1979, , 163-201.		5
173	Chemistry of Oceanic Particulate Matter and Sediments: Implications for Bottom Sediment Resuspension. Science, 1978, 200, 533-535.	12.6	28
174	Comparison of the bottom nepheloid layer and late Holocene deposition on Nitinat Fan: Implications for lutite dispersal and deposition. Bulletin of the Geological Society of America, 1977, 88, 1586.	3.3	15
175	Distribution, composition, and transport of suspended particulate matter in the vicinity of Willapa submarine canyon, Washington. Bulletin of the Geological Society of America, 1976, 87, 625.	3.3	36
176	Suspended particulate matter: collection by pressure filtration and elemental analysis by thin-film X-ray fluorescence. Deep Sea Research and Oceanographic Abstracts, 1976, 23, 181-186.	0.3	6
177	Temporal and spatial variability of the bottom nepheloid layer over a deep-sea fan. Marine Geology, 1976, 21, 67-79.	2.1	10
178	On the Global Distribution of Hydrothermal Vent Fields. Geophysical Monograph Series, 0, , 245-266.	0.1	97
179	Hydrothermal Plumes Over Spreading-Center Axes: Global Distributions and Geological Inferences. Geophysical Monograph Series, 0, , 47-71.	0.1	101