
Jaehee Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of electrochemical potentiostatic activation on carrier transport in AlGaN-based deep-ultraviolet light-emitting diodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 023410.	2.1	0
2	Determination of Schottky barrier height of graphene electrode on AlGaN/GaN heterostructure. AIP Advances, 2021, 11, .	1.3	7
3	Effects of Dielectric Passivation on Device Performance of AlGaN/GaN High-Electron-Mobility Transistors. ECS Journal of Solid State Science and Technology, 2021, 10, 055016.	1.8	2
4	Solar-blind ultraviolet photodetectors with thermally reduced graphene oxide formed on high-Al-content AlGaN layers. AIP Advances, 2021, 11, .	1.3	7
5	Polarized ultraviolet emitters with Al wire-grid polarizers fabricated by solvent-assisted nanotransfer process. Nanotechnology, 2020, 31, 045304.	2.6	3
6	Counter-intuitive junction temperature behavior in AlGaN-based deep-ultraviolet light-emitting diodes. AIP Advances, 2020, 10, 045135.	1.3	2
7	Dual-functional ultraviolet photodetector with graphene electrodes on AlGaN/GaN heterostructure. Scientific Reports, 2020, 10, 22059.	3.3	33
8	Effects of SiO2 passivation on the sheet carrier density of two-dimensional electron gas formed in the AlGaN/GaN interface. Japanese Journal of Applied Physics, 2020, 59, 101001.	1.5	2
9	Transfer or delivery of micro light-emitting diodes for light-emitting diode displays. AIP Advances, 2019, 9, 100901.	1.3	0
10	Self-protective GaInN-based light-emitting diodes with VO2 nanowires. Nanoscale, 2019, 11, 18444-18448.	5.6	0
11	Effects of surface passivation dielectrics on carrier transport in AlGaN/GaN heterostructure field-effect transistors. AIP Advances, 2018, 8, .	1.3	3
12	Fundamental Limitations of Wide-Bandgap Semiconductors for Light-Emitting Diodes. ACS Energy Letters, 2018, 3, 655-662.	17.4	48
13	Metal–semiconductor–metal ultraviolet photodiodes based on reduced graphene oxide/GaN Schottky contacts. Thin Solid Films, 2018, 660, 824-827.	1.8	21
14	Observation of space-charge-limited current in AlGaN/GaN ultraviolet light-emitting diodes. Materials Letters, 2018, 214, 217-219.	2.6	11
15	AlGaN Ultraviolet Metal–Semiconductor–Metal Photodetectors with Reduced Graphene Oxide Contacts. Applied Sciences (Switzerland), 2018, 8, 2098.	2.5	16
16	Double Gaussian barrier distribution of permalloy (Ni0.8Fe0.2) Schottky contacts to n-type GaN. Superlattices and Microstructures, 2018, 120, 508-516.	3.1	18
17	Review—Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency. ECS Journal of Solid State Science and Technology, 2017, 6, Q42-Q52.	1.8	81
18	Junction temperature rise due to self-heating effects in GaInN blue light-emitting diodes. Thin Solid Films, 2017, 641, 8-11.	1.8	10

#	Article	IF	CITATIONS
19	White lightâ€emitting diodes: History, progress, and future. Laser and Photonics Reviews, 2017, 11, 1600147.	8.7	557
20	Changes in physical properties of graphene oxide with thermal reduction. Journal of the Korean Physical Society, 2017, 71, 156-160.	0.7	10
21	The Effect of Imbalanced Carrier Transport on the Efficiency Droop in GalnN-Based Blue and Green Light-Emitting Diodes. Energies, 2017, 10, 1277.	3.1	13
22	Temperature Dependence of Efficiency in GaInN/GaN Lightâ€Emitting Diodes with a GaInN Underlayer. International Journal of Applied Ceramic Technology, 2016, 13, 234-238.	2.1	1
23	Energy bandgap variation in oblique angle-deposited indium tin oxide. Applied Physics Letters, 2016, 108,	3.3	18
24	Variation of the external quantum efficiency with temperature and current density in red, blue, and deep ultraviolet light-emitting diodes. Journal of Applied Physics, 2016, 119, .	2.5	16
25	Current transport mechanism in graphene/AlGaN/GaN heterostructures with various Al mole fractions. AIP Advances, 2016, 6, .	1.3	17
26	Electrical and optical properties of nickel thin-films fabricated by using oblique-angle deposition. Journal of the Korean Physical Society, 2016, 68, 839-841.	0.7	5
27	Effect of characteristic properties of graphene oxide on reduced graphene oxide/Si schottky diodes performance. Materials Science in Semiconductor Processing, 2016, 44, 1-7.	4.0	11
28	Light Extraction Enhancement in GaN-Based Light-Emitting Diodes with Patterned Micro-Pillars. ECS Meeting Abstracts, 2016, , .	0.0	0
29	Temperature Dependent Current-Voltage and Capacitance-Voltage Characteristics of an Au/n-Type Si Schottky Barrier Diode Modified Using a PEDOT:PSS Interlayer. Materials Transactions, 2015, 56, 10-16.	1.2	22
30	Effect of a p-type ZnO insertion layer on the external quantum efficiency of GalnN light-emitting diodes. Applied Physics Express, 2015, 8, 092102.	2.4	1
31	Reduced junction temperature and enhanced performance of high power light-emitting diodes using reduced graphene oxide pattern. Journal Physics D: Applied Physics, 2015, 48, 265102.	2.8	9
32	U-shape phenomenon in the efficiency-versus-current curves in AlGaN-based deep-ultraviolet light-emitting diodes. , 2015, , .		0
33	The beneficial effects of a p-type GaInN spacer layer on the efficiency of GaInN/GaN light-emitting diodes. Current Applied Physics, 2015, 15, 1222-1225.	2.4	0
34	Onset of the Efficiency Droop in GaInN Quantum Well Light-Emitting Diodes under Photoluminescence and Electroluminescence Excitation. ACS Photonics, 2015, 2, 1013-1018.	6.6	20
35	GalnN-based light emitting diodes embedded with wire grid polarizers. Japanese Journal of Applied Physics, 2015, 54, 02BB02.	1.5	1
36	Solution-processed multidimensional ZnO/CuO heterojunction as ultraviolet sensing. Optical Materials Express, 2015, 5, 1752.	3.0	20

#	Article	lF	CITATIONS
37	Distinct U-shape efficiency-versus-current curves in AlGaN-based deep-ultraviolet light-emitting diodes. Optics Express, 2015, 23, 15398.	3.4	3
38	Capacitance–Voltage Analysis of GaInN Light Emitting Diodes with a Polarization Matched Nanostructure. Journal of Computational and Theoretical Nanoscience, 2015, 12, 742-744.	0.4	0
39	Enhanced power conversion efficiency of dye-sensitized solar cells with multifunctional photoanodes based on a three-dimensional TiO2 nanohelix array. Solar Energy Materials and Solar Cells, 2015, 132, 47-55.	6.2	33
40	A Matching Method to Reduce the Distribution of Optical and Electrical Properties of White Light-Emitting Diodes. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 265-268.	0.5	0
41	Efficiency droop in gallium indium nitride (GaInN)/gallium nitride (GaN) LEDs. , 2014, , 279-300.		4
42	Mesa-Free III-V Nitride Light-Emitting Diodes with Flat Surface. ECS Solid State Letters, 2014, 3, Q17-Q19.	1.4	2
43	Strong correlation between capacitance and breakdown voltage of GalnN/GaN light-emitting diodes. Electronic Materials Letters, 2014, 10, 1155-1157.	2.2	6
44	Transient voltage suppressor diode designed for the protection of high-brightness GaN-based LEDs from various electrostatic discharge shocks. Journal of the Korean Physical Society, 2014, 65, 1106-1112.	0.7	2
45	S6-G4: High injection and efficiency droop in GalnN light-emitting diodes. , 2014, , .		0
46	Size dependence of silica nanospheres embedded in 385 nm ultraviolet light-emitting diodes on a far-field emission pattern. Optics Express, 2014, 22, A1553.	3.4	0
47	Fabrication and Characteristics of GaN-Based Light-Emitting Diodes with a Reduced Graphene Oxide Current-Spreading Layer. ACS Applied Materials & Interfaces, 2014, 6, 22451-22456.	8.0	15
48	A Universal Method of Producing Transparent Electrodes Using Wideâ€Bandgap Materials. Advanced Functional Materials, 2014, 24, 1575-1581.	14.9	37
49	Fabrication of tapered graded-refractive-index micropillars using ion-implanted-photoresist as an etch mask. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 021305.	2.1	0
50	Efficiency droop in lightâ€emitting diodes: Challenges and countermeasures. Laser and Photonics Reviews, 2013, 7, 408-421.	8.7	413
51	Enhanced overall efficiency of GaInN-based light-emitting diodes with reduced efficiency droop by Al-composition-graded AlGaN/GaN superlattice electron blocking layer. Applied Physics Letters, 2013, 103, .	3.3	60
52	Optically functional surface structures for GaN-based light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 8134.	5.5	8
53	Enhanced phosphor conversion efficiency of GaN-based white light-emitting diodes having dichroic-filtering contacts. Journal of Materials Chemistry C, 2013, 1, 5733.	5.5	6
54	Identifying the cause of the efficiency droop in GaInN light-emitting diodes by correlating the onset of high injection with the onset of the efficiency droop. Applied Physics Letters, 2013, 102, .	3.3	75

#	Article	IF	CITATIONS
55	Nanostructured Transparent Conductive Oxides for Photovoltaic Applications. Materials Research Society Symposia Proceedings, 2013, 1493, 23-28.	0.1	2
56	Analysis of the temperature dependence of the forward voltage characteristics of GalnN light-emitting diodes. Applied Physics Letters, 2013, 103, 121103.	3.3	52
57	Enhanced Omnidirectional Photovoltaic Performance of Solar Cells Using Multipleâ€Discreteâ€Layer Tailored―and Lowâ€Refractive Index Antiâ€Reflection Coatings. Advanced Functional Materials, 2013, 23, 583-590.	14.9	104
58	Effect of Quantum Barrier Thickness in the Multiple-Quantum-Well Active Region of GaInN/GaN Light-Emitting Diodes. IEEE Photonics Journal, 2013, 5, 1600207-1600207.	2.0	30
59	Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings. Optics Express, 2013, 21, A157.	3.4	31
60	GaInN light-emitting diodes using separate epitaxial growth for the p-type region to attain polarization-inverted electron-blocking layer, reduced electron leakage, and improved hole injection. Applied Physics Letters, 2013, 103, .	3.3	18
61	Experimental and Theoretical Study of the Optical and Electrical Properties of Nanostructured Indium Tin Oxide Fabricated by Oblique-Angle Deposition. Journal of Nanoscience and Nanotechnology, 2012, 12, 3950-3953.	0.9	17
62	Genetic Algorithm for Innovative Device Designs in High-Efficiency Ill–V Nitride Light-Emitting Diodes. Applied Physics Express, 2012, 5, 012102.	2.4	9
63	Polarized light emission from GaInN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers. Applied Physics Letters, 2012, 101, 061103.	3.3	34
64	Internal quantum efficiency in light-emitting diodes based on the width of efficiency-versus-carrier-concentration curve. , 2012, , .		0
65	Temperature dependent efficiency droop in GaInN light-emitting diodes with different current densities. Applied Physics Letters, 2012, 100, .	3.3	109
66	Emission pattern control and polarized light emission through patterned graded-refractive-index coatings on GaInN light-emitting diodes. Optics Express, 2012, 20, 16677.	3.4	7
67	Analysis of parasitic cyan luminescence occurring in GaInN blue light-emitting diodes. Journal of Applied Physics, 2012, 112, 074512.	2.5	4
68	Efficiency droop in AlGaInP and GaInN light-emitting diodes. Applied Physics Letters, 2012, 100, .	3.3	63
69	Tailored Nanoporous Coatings Fabricated on Conformable Polymer Substrates. ACS Applied Materials & Interfaces, 2012, 4, 6295-6301.	8.0	7
70	Enhanced lightâ€extraction from a GaN waveguide using microâ€pillar TiO ₂ SiO ₂ gradedâ€refractiveâ€index layers. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2277-2280.	1.8	2
71	Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency. Applied Physics Letters, 2012, 100, .	3.3	139
72	Development of large area nanostructure antireflection coatings for EO/IR sensor applications. Proceedings of SPIE, 2012, , .	0.8	4

#	Article	IF	CITATIONS
73	Development of nanostructure based antireflection coatings for EO/IR sensor applications. Proceedings of SPIE, 2012, , .	0.8	0
74	Method for determining the radiative efficiency of GaInN quantum wells based on the width of efficiency-versus-carrier-concentration curve. Applied Physics Letters, 2012, 101, .	3.3	15
75	Strong light-extraction enhancement in GalnN light-emitting diodes patterned with TiO2 micro-pillars with tapered sidewalls. Applied Physics Letters, 2012, 101, 141105.	3.3	20
76	Broadband nanostructured antireflection coating on glass for photovoltaic applications. , 2012, , .		12
77	Reduction of efficiency droop in GalnN/GaN light-emitting diodes with thick AlGaN cladding layers. Electronic Materials Letters, 2012, 8, 1-4.	2.2	9
78	Inductively coupled plasma etching of graded-refractive-index layers of TiO2 and SiO2 using an ITO hard mask. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	2.1	21
79	A complementary matching technique to reduce the variance of optical and electrical properties of lightâ€emitting diodes. Journal of the Society for Information Display, 2011, 19, 431-434.	2.1	0
80	Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	129
81	Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes. Optics Express, 2011, 19, A1135.	3.4	82
82	High-voltage quantum well waveguide solar cells. Proceedings of SPIE, 2011, , .	0.8	2
83	Characteristics of dotlike green satellite emission in GaInN light emitting diodes. Applied Physics Letters, 2011, 98, .	3.3	22
84	Temperatureâ€dependent lightâ€output characteristics of GaInN lightâ€emitting diodes with different dislocation densities. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 947-950.	1.8	34
85	Ultra-high transmittance through nanostructure-coated glass for solar cell applications. , 2011, , .		6
86	Effects of polarization-field tuning in GaInN light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	27
87	Promotion of hole injection enabled by GaInN/GaN light-emitting triodes and its effect on the efficiency droop. Applied Physics Letters, 2011, 99, 181115.	3.3	20
88	On the symmetry of efficiency-versus-carrier-concentration curves in GalnN/GaN light-emitting diodes and relation to droop-causing mechanisms. Applied Physics Letters, 2011, 98, 033506.	3.3	84
89	Electrically conductive thin-film color filters made of single-material indium-tin-oxide. Journal of Applied Physics, 2011, 109, 103113.	2.5	14
90	Strong light extraction enhancement in GalnN light-emitting diodes by using self-organized nanoscale patterning of p-type GaN. Applied Physics Letters, 2011, 98, .	3.3	76

#	Article	IF	CITATIONS
91	On the temperature dependence of electron leakage from the active region of GalnN/GaN light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	69
92	Transport-mechanism analysis of the reverse leakage current in GaInN light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	121
93	Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes. Journal of Applied Physics, 2011, 110, .	2.5	20
94	High-performance antireflection coatings utilizing nanoporous layers. MRS Bulletin, 2011, 36, 434-438.	3.5	47
95	Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics. Applied Physics Express, 2011, 4, 052503.	2.4	51
96	On the symmetry of efficiency-versus-carrier-concentration curves in GalnN/GaN light-emitting diodes and relation to droop-causing mechanisms. , 2011, , .		0
97	Characteristics of blue and ultraviolet light-emitting diodes with current density and temperature. Electronic Materials Letters, 2010, 6, 51-53.	2.2	13
98	Electrical and optical characterization of GaN-based light-emitting diodes fabricated with top-emission and flip-chip structures. Materials Science in Semiconductor Processing, 2010, 13, 180-184.	4.0	6
99	Electron-beam excitation. Nature Photonics, 2010, 4, 735-736.	31.4	11
100	Enhanced electron capture and symmetrized carrier distribution in GaInN light-emitting diodes having tailored barrier doping. Applied Physics Letters, 2010, 96, 121110.	3.3	40
101	Analysis of thermal properties of GaInN light-emitting diodes and laser diodes. Journal of Applied Physics, 2010, 108, .	2.5	53
102	Analysis of reverse tunnelling current in GalnN light-emitting diodes. Electronics Letters, 2010, 46, 156.	1.0	11
103	Nanostructure-based antireflection coatings for EO/IR sensor applications. Proceedings of SPIE, 2010,	0.8	0
104	Carrier recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes. Applied Physics Letters, 2010, 97, .	3.3	185
105	Demonstration of optical interference filters utilizing tunable refractive index layers. Optics Express, 2010, 18, A594.	3.4	10
106	Enhancement of photovoltaic cell response due to high-refractive-index encapsulants. Journal of Applied Physics, 2010, 108, 043102.	2.5	18
107	Color rendering ability and luminous efficacy enhancements in white light-emitting diodes. , 2009, , .		3
108	Effect of chip geometry on breakdown voltage of GaInN light-emitting diodes. Electronics Letters, 2009, 45, 755.	1.0	0

#	Article	IF	CITATIONS
109	Study of UV excited white light-emitting diodes for optimization of luminous efficiency and color rendering index. Physica Status Solidi - Rapid Research Letters, 2009, 3, 34-36.	2.4	5
110	Color tunable light-emitting diodes with modified pulse-width modulation. Physica Status Solidi - Rapid Research Letters, 2009, 3, 284-286.	2.4	0
111	Refractive-Index-Matched Indium–Tin-Oxide Electrodes for Liquid Crystal Displays. Japanese Journal of Applied Physics, 2009, 48, 120203.	1.5	79
112	Improved color rendering and luminous efficacy in phosphor-converted white light-emitting diodes by use of dual-blue emitting active regions. Optics Express, 2009, 17, 10806.	3.4	78
113	Lightâ€Extraction Enhancement of GalnN Lightâ€Emitting Diodes by Gradedâ€Refractiveâ€Index Indium Tin Oxide Antiâ€Reflection Contact. Advanced Materials, 2008, 20, 801-804.	21.0	275
114	Leakage current origins and passivation effect of GaN-based light emitting diodes fabricated with Ag p-contacts. Applied Physics Letters, 2008, 92, .	3.3	26
115	Improved Emission Efficiency in InGaN Light-Emitting Diodes Using Reverse Bias in Pulsed Voltage Operation. IEEE Photonics Technology Letters, 2008, 20, 1190-1192.	2.5	1
116	Light-extraction enhancement of vertical-injection GaN-based light-emitting diodes fabricated with highly integrated surface textures. Optics Letters, 2008, 33, 1273.	3.3	63
117	Polarization of light emission by 460nmâ€^GalnNâ^•GaN light-emitting diodes grown on (0001) oriented sapphire substrates. Applied Physics Letters, 2007, 91, .	3.3	62
118	Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry. Applied Physics Letters, 2007, 91, .	3.3	83
119	Measurements of current spreading length and design of GaN-based light emitting diodes. Applied Physics Letters, 2007, 90, 063510.	3.3	39
120	Enhanced light extraction of GaN-based light-emitting diodes by using textured n-type GaN layers. Applied Physics Letters, 2007, 90, 161110.	3.3	38
121	Alternating-current Light Emitting Diodes with a Diode Bridge Circuitry. Japanese Journal of Applied Physics, 2007, 46, L1194-L1196.	1.5	32
122	Linearly polarized emission from GaInN lightemitting diodes with polarization-enhancing reflector. Optics Express, 2007, 15, 11213.	3.4	37
123	Consideration of the Actual Current-Spreading Length of GaN-Based Light-Emitting Diodes for High-Efficiency Design. IEEE Journal of Quantum Electronics, 2007, 43, 625-632.	1.9	32
124	High-Reflectance and Thermally Stable AgCu Alloy p-Type Reflectors for GaN-Based Light-Emitting Diodes. IEEE Photonics Technology Letters, 2007, 19, 336-338.	2.5	57
125	Enhanced Light Output of GaN-Based Light-Emitting Diodes by Using Omnidirectional Sidewall Reflectors. IEEE Photonics Technology Letters, 2007, 19, 1562-1564.	2.5	11
126	Preparation of Highly Luminescent Nanocrystals and Their Application to Light-Emitting Diodes. Advanced Materials, 2007, 19, 1927-1932.	21.0	210

#	Article	IF	CITATIONS
127	Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process. Applied Physics Letters, 2006, 88, 103505.	3.3	52
128	GalnN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer. Applied Physics Letters, 2006, 88, 013501.	3.3	128
129	GaN light-emitting triodes for high-efficiency hole injection and light emission. , 2006, 6134, 130.		0
130	High quality tin zinc oxide/Ag ohmic contacts for UV flip-chip light-emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2133-2136.	0.8	1
131	Nanoparticle Embedded p-Type Electrodes for GaN-Based Flip-Chip Light Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2006, 6, 3547-3550.	0.9	7
132	Enhanced light output of GaN-based near-UV light-emitting diodes by using nanopatterned indium tin oxide electrodes. Semiconductor Science and Technology, 2006, 21, 594-597.	2.0	11
133	GaN Light-Emitting Triodes for High-Efficiency Hole Injection. Journal of the Electrochemical Society, 2006, 153, G734.	2.9	2
134	Trapped whispering-gallery optical modes in white light-emitting diode lamps with remote phosphor. Applied Physics Letters, 2006, 89, 041125.	3.3	29
135	Enhanced light-extraction in GalnN near-ultraviolet light-emitting diode with Al-based omnidirectional reflector having NiZnâ^•Ag microcontacts. Applied Physics Letters, 2006, 89, 141123.	3.3	32
136	Enhancement of light extraction in GaInN light-emitting diodes by conductive omni-directional reflectors. , 2006, , .		0
137	Recent development of patterned structure light-emitting diodes. , 2005, , .		1
138	Simulation and fabrication of highly efficient InGaN-based LEDs with corrugated interface substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2874-2877.	0.8	47
139	Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1869-1873.	1.8	48
140	Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns. Applied Physics Letters, 2005, 87, 203508.	3.3	313
141	Light-output enhancement of GaN-based light-emitting diodes by using hole-patterned transparent indium tin oxide electrodes. Journal of Applied Physics, 2005, 98, 076107.	2.5	33
142	Analysis of high-power packages for white-light-emitting diode lamps with remote phosphor. Materials Research Society Symposia Proceedings, 2005, 892, 166.	0.1	2
143	Strongly Enhanced Phosphor Efficiency in GalnN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup. Japanese Journal of Applied Physics, 2005, 44, L649-L651.	1.5	208
144	Analysis of high-power packages for phosphor-based white-light-emitting diodes. Applied Physics Letters, 2005, 86, 243505.	3.3	233

#	Article	IF	CITATIONS
145	Low resistance and highly reflective Cu–Ni solid solution/Ag ohmic contacts to p-GaN for flip-chip light emitting diodes. Physica Status Solidi A, 2004, 201, 2823-2826.	1.7	4
146	Carrier Transport Mechanism of Pd/Pt/Au Ohmic Contacts to p-GaN in InGaN Laser Diode. Physica Status Solidi A, 2002, 194, 587-590.	1.7	6
147	The Role of an Overlayer in the Formation of Ni-based Transparent Ohmic Contacts to p-GaN. Japanese Journal of Applied Physics, 2001, 40, 6221-6225.	1.5	18
148	InGaN/GaN multi-quantum well distributed Bragg reflector laser diode. Applied Physics Letters, 2000, 76, 1489-1491.	3.3	18
149	Characteristic of InGaN/GaN Laser Diode Grown by a Multi-Wafer MOCVD System. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 1.	1.0	48
150	Electromigration-induced failures in interconnects with bimodal grain size distributions. Journal of Electronic Materials, 1990, 19, 1207-1212.	2.2	35
151	Grain size dependence of electromigrationâ€induced failures in narrow interconnects. Applied Physics Letters, 1989, 54, 2577-2579.	3.3	205
152	A new electromigration testing technique for rapid statistical evaluation of interconnect technology. IEEE Electron Device Letters, 1986, 7, 667-668.	3.9	46
153	Effects of p-Electrode Reflectivity on Extraction Efficiency of Nitride-Based Light-Emitting Diodes. Applied Physics Express, 0, 1, 052001.	2.4	7
154	Brighter and smarter LEDs via graded refractive indexes. SPIE Newsroom, 0, , .	0.1	1
155	Electrochemical Potentiostatic Activation for the Improvement of 270nm AlGaN-Based UV-C Light-Emitting Diodes. ECS Journal of Solid State Science and Technology, 0, , .	1.8	0