Jaehee Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603893/publications.pdf

Version: 2024-02-01

81900 71685 6,175 155 39 76 citations g-index h-index papers 155 155 155 4941 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	White lightâ€emitting diodes: History, progress, and future. Laser and Photonics Reviews, 2017, 11, 1600147.	8.7	557
2	Efficiency droop in lightâ€emitting diodes: Challenges and countermeasures. Laser and Photonics Reviews, 2013, 7, 408-421.	8.7	413
3	Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns. Applied Physics Letters, 2005, 87, 203508.	3.3	313
4	Lightâ€Extraction Enhancement of GalnN Lightâ€Emitting Diodes by Gradedâ€Refractiveâ€Index Indium Tin Oxide Antiâ€Reflection Contact. Advanced Materials, 2008, 20, 801-804.	21.0	275
5	Analysis of high-power packages for phosphor-based white-light-emitting diodes. Applied Physics Letters, 2005, 86, 243505.	3.3	233
6	Preparation of Highly Luminescent Nanocrystals and Their Application to Light-Emitting Diodes. Advanced Materials, 2007, 19, 1927-1932.	21.0	210
7	Strongly Enhanced Phosphor Efficiency in GalnN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup. Japanese Journal of Applied Physics, 2005, 44, L649-L651.	1.5	208
8	Grain size dependence of electromigrationâ€induced failures in narrow interconnects. Applied Physics Letters, 1989, 54, 2577-2579.	3.3	205
9	Carrier recombination mechanisms and efficiency droop in GalnN/GaN light-emitting diodes. Applied Physics Letters, 2010, 97, .	3.3	185
10	Analytic model for the efficiency droop in semiconductors with asymmetric carrier-transport properties based on drift-induced reduction of injection efficiency. Applied Physics Letters, 2012, 100, .	3. 3	139
11	Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	129
12	GalnN light-emitting diode with conductive omnidirectional reflector having a low-refractive-index indium-tin oxide layer. Applied Physics Letters, 2006, 88, 013501.	3.3	128
13	Transport-mechanism analysis of the reverse leakage current in GalnN light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	121
14	Temperature dependent efficiency droop in GalnN light-emitting diodes with different current densities. Applied Physics Letters, 2012, 100, .	3.3	109
15	Enhanced Omnidirectional Photovoltaic Performance of Solar Cells Using Multipleâ€Discreteâ€Layer Tailoredâ€and Lowâ€Refractive Index Antiâ€Reflection Coatings. Advanced Functional Materials, 2013, 23, 583-590.	14.9	104
16	On the symmetry of efficiency-versus-carrier-concentration curves in GalnN/GaN light-emitting diodes and relation to droop-causing mechanisms. Applied Physics Letters, 2011, 98, 033506.	3.3	84
17	Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry. Applied Physics Letters, 2007, 91, .	3.3	83
18	Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes. Optics Express, 2011, 19, A1135.	3.4	82

#	Article	IF	CITATIONS
19	Reviewâ€"Group III-Nitride-Based Ultraviolet Light-Emitting Diodes: Ways of Increasing External Quantum Efficiency. ECS Journal of Solid State Science and Technology, 2017, 6, Q42-Q52.	1.8	81
20	Refractive-Index-Matched Indium–Tin-Oxide Electrodes for Liquid Crystal Displays. Japanese Journal of Applied Physics, 2009, 48, 120203.	1.5	79
21	Improved color rendering and luminous efficacy in phosphor-converted white light-emitting diodes by use of dual-blue emitting active regions. Optics Express, 2009, 17, 10806.	3.4	78
22	Strong light extraction enhancement in GalnN light-emitting diodes by using self-organized nanoscale patterning of p-type GaN. Applied Physics Letters, 2011, 98, .	3.3	76
23	Identifying the cause of the efficiency droop in GalnN light-emitting diodes by correlating the onset of high injection with the onset of the efficiency droop. Applied Physics Letters, $2013, 102, \ldots$	3.3	75
24	On the temperature dependence of electron leakage from the active region of GalnN/GaN light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	69
25	Light-extraction enhancement of vertical-injection GaN-based light-emitting diodes fabricated with highly integrated surface textures. Optics Letters, 2008, 33, 1273.	3.3	63
26	Efficiency droop in AlGaInP and GaInN light-emitting diodes. Applied Physics Letters, 2012, 100, .	3.3	63
27	Polarization of light emission by 460nmâ€^GalnNâ^•GaN light-emitting diodes grown on (0001) oriented sapphire substrates. Applied Physics Letters, 2007, 91, .	3.3	62
28	Enhanced overall efficiency of GaInN-based light-emitting diodes with reduced efficiency droop by Al-composition-graded AlGaN/GaN superlattice electron blocking layer. Applied Physics Letters, 2013, 103, .	3.3	60
29	High-Reflectance and Thermally Stable AgCu Alloy p-Type Reflectors for GaN-Based Light-Emitting Diodes. IEEE Photonics Technology Letters, 2007, 19, 336-338.	2.5	57
30	Analysis of thermal properties of GalnN light-emitting diodes and laser diodes. Journal of Applied Physics, 2010, 108, .	2.5	53
31	Enhancement of the light output of GaN-based ultraviolet light-emitting diodes by a one-dimensional nanopatterning process. Applied Physics Letters, 2006, 88, 103505.	3.3	52
32	Analysis of the temperature dependence of the forward voltage characteristics of GaInN light-emitting diodes. Applied Physics Letters, 2013, 103, 121103.	3.3	52
33	Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics. Applied Physics Express, 2011, 4, 052503.	2.4	51
34	Characteristic of InGaN/GaN Laser Diode Grown by a Multi-Wafer MOCVD System. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 1.	1.0	48
35	Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1869-1873.	1.8	48
36	Fundamental Limitations of Wide-Bandgap Semiconductors for Light-Emitting Diodes. ACS Energy Letters, 2018, 3, 655-662.	17.4	48

#	Article	IF	CITATIONS
37	Simulation and fabrication of highly efficient InGaN-based LEDs with corrugated interface substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2874-2877.	0.8	47
38	High-performance antireflection coatings utilizing nanoporous layers. MRS Bulletin, 2011, 36, 434-438.	3.5	47
39	A new electromigration testing technique for rapid statistical evaluation of interconnect technology. IEEE Electron Device Letters, 1986, 7, 667-668.	3.9	46
40	Enhanced electron capture and symmetrized carrier distribution in GalnN light-emitting diodes having tailored barrier doping. Applied Physics Letters, 2010, 96, 121110.	3.3	40
41	Measurements of current spreading length and design of GaN-based light emitting diodes. Applied Physics Letters, 2007, 90, 063510.	3.3	39
42	Enhanced light extraction of GaN-based light-emitting diodes by using textured n-type GaN layers. Applied Physics Letters, 2007, 90, 161110.	3.3	38
43	Linearly polarized emission from GalnN lightemitting diodes with polarization-enhancing reflector. Optics Express, 2007, 15, 11213.	3.4	37
44	A Universal Method of Producing Transparent Electrodes Using Wideâ∈Bandgap Materials. Advanced Functional Materials, 2014, 24, 1575-1581.	14.9	37
45	Electromigration-induced failures in interconnects with bimodal grain size distributions. Journal of Electronic Materials, 1990, 19, 1207-1212.	2.2	35
46	Temperatureâ€dependent lightâ€output characteristics of GaInN lightâ€emitting diodes with different dislocation densities. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 947-950.	1.8	34
47	Polarized light emission from GalnN light-emitting diodes embedded with subwavelength aluminum wire-grid polarizers. Applied Physics Letters, 2012, 101, 061103.	3.3	34
48	Light-output enhancement of GaN-based light-emitting diodes by using hole-patterned transparent indium tin oxide electrodes. Journal of Applied Physics, 2005, 98, 076107.	2.5	33
49	Enhanced power conversion efficiency of dye-sensitized solar cells with multifunctional photoanodes based on a three-dimensional TiO2 nanohelix array. Solar Energy Materials and Solar Cells, 2015, 132, 47-55.	6.2	33
50	Dual-functional ultraviolet photodetector with graphene electrodes on AlGaN/GaN heterostructure. Scientific Reports, 2020, 10, 22059.	3.3	33
51	Enhanced light-extraction in GalnN near-ultraviolet light-emitting diode with Al-based omnidirectional reflector having NiZnâ·Ag microcontacts. Applied Physics Letters, 2006, 89, 141123.	3.3	32
52	Alternating-current Light Emitting Diodes with a Diode Bridge Circuitry. Japanese Journal of Applied Physics, 2007, 46, L1194-L1196.	1.5	32
53	Consideration of the Actual Current-Spreading Length of GaN-Based Light-Emitting Diodes for High-Efficiency Design. IEEE Journal of Quantum Electronics, 2007, 43, 625-632.	1.9	32
54	Enhanced broadband and omni-directional performance of polycrystalline Si solar cells by using discrete multilayer antireflection coatings. Optics Express, 2013, 21, A157.	3.4	31

#	Article	IF	CITATIONS
55	Effect of Quantum Barrier Thickness in the Multiple-Quantum-Well Active Region of GalnN/GaN Light-Emitting Diodes. IEEE Photonics Journal, 2013, 5, 1600207-1600207.	2.0	30
56	Trapped whispering-gallery optical modes in white light-emitting diode lamps with remote phosphor. Applied Physics Letters, 2006, 89, 041125.	3.3	29
57	Effects of polarization-field tuning in GalnN light-emitting diodes. Applied Physics Letters, 2011, 99, .	3.3	27
58	Leakage current origins and passivation effect of GaN-based light emitting diodes fabricated with Ag p-contacts. Applied Physics Letters, 2008, 92, .	3.3	26
59	Characteristics of dotlike green satellite emission in GalnN light emitting diodes. Applied Physics Letters, 2011, 98, .	3.3	22
60	Temperature Dependent Current-Voltage and Capacitance-Voltage Characteristics of an Au/n-Type Si Schottky Barrier Diode Modified Using a PEDOT:PSS Interlayer. Materials Transactions, 2015, 56, 10-16.	1.2	22
61	Inductively coupled plasma etching of graded-refractive-index layers of TiO2 and SiO2 using an ITO hard mask. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	2.1	21
62	Metal–semiconductor–metal ultraviolet photodiodes based on reduced graphene oxide/GaN Schottky contacts. Thin Solid Films, 2018, 660, 824-827.	1.8	21
63	Promotion of hole injection enabled by GaInN/GaN light-emitting triodes and its effect on the efficiency droop. Applied Physics Letters, 2011, 99, 181115.	3.3	20
64	Optically functional surface composed of patterned graded-refractive-index coatings to enhance light-extraction of GaInN light-emitting diodes. Journal of Applied Physics, 2011, 110, .	2.5	20
65	Strong light-extraction enhancement in GalnN light-emitting diodes patterned with TiO2 micro-pillars with tapered sidewalls. Applied Physics Letters, 2012, 101, 141105.	3.3	20
66	Onset of the Efficiency Droop in GalnN Quantum Well Light-Emitting Diodes under Photoluminescence and Electroluminescence Excitation. ACS Photonics, 2015, 2, 1013-1018.	6.6	20
67	Solution-processed multidimensional ZnO/CuO heterojunction as ultraviolet sensing. Optical Materials Express, 2015, 5, 1752.	3.0	20
68	InGaN/GaN multi-quantum well distributed Bragg reflector laser diode. Applied Physics Letters, 2000, 76, 1489-1491.	3.3	18
69	The Role of an Overlayer in the Formation of Ni-based Transparent Ohmic Contacts to p-GaN. Japanese Journal of Applied Physics, 2001, 40, 6221-6225.	1.5	18
70	Enhancement of photovoltaic cell response due to high-refractive-index encapsulants. Journal of Applied Physics, 2010, 108, 043102.	2.5	18
71	GalnN light-emitting diodes using separate epitaxial growth for the p-type region to attain polarization-inverted electron-blocking layer, reduced electron leakage, and improved hole injection. Applied Physics Letters, 2013, 103, .	3.3	18
72	Energy bandgap variation in oblique angle-deposited indium tin oxide. Applied Physics Letters, 2016, 108,	3.3	18

#	Article	IF	CITATIONS
73	Double Gaussian barrier distribution of permalloy (Ni0.8Fe0.2) Schottky contacts to n-type GaN. Superlattices and Microstructures, 2018, 120, 508-516.	3.1	18
74	Experimental and Theoretical Study of the Optical and Electrical Properties of Nanostructured Indium Tin Oxide Fabricated by Oblique-Angle Deposition. Journal of Nanoscience and Nanotechnology, 2012, 12, 3950-3953.	0.9	17
75	Current transport mechanism in graphene/AlGaN/GaN heterostructures with various Al mole fractions. AIP Advances, 2016, 6, .	1.3	17
76	Variation of the external quantum efficiency with temperature and current density in red, blue, and deep ultraviolet light-emitting diodes. Journal of Applied Physics, 2016, 119, .	2.5	16
77	AlGaN Ultraviolet Metal–Semiconductor–Metal Photodetectors with Reduced Graphene Oxide Contacts. Applied Sciences (Switzerland), 2018, 8, 2098.	2.5	16
78	Method for determining the radiative efficiency of GalnN quantum wells based on the width of efficiency-versus-carrier-concentration curve. Applied Physics Letters, 2012, 101, .	3.3	15
79	Fabrication and Characteristics of GaN-Based Light-Emitting Diodes with a Reduced Graphene Oxide Current-Spreading Layer. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22451-22456.	8.0	15
80	Electrically conductive thin-film color filters made of single-material indium-tin-oxide. Journal of Applied Physics, 2011, 109, 103113.	2.5	14
81	Characteristics of blue and ultraviolet light-emitting diodes with current density and temperature. Electronic Materials Letters, 2010, 6, 51-53.	2.2	13
82	The Effect of Imbalanced Carrier Transport on the Efficiency Droop in GalnN-Based Blue and Green Light-Emitting Diodes. Energies, 2017, 10, 1277.	3.1	13
83	Broadband nanostructured antireflection coating on glass for photovoltaic applications. , 2012, , .		12
84	Enhanced light output of GaN-based near-UV light-emitting diodes by using nanopatterned indium tin oxide electrodes. Semiconductor Science and Technology, 2006, 21, 594-597.	2.0	11
85	Enhanced Light Output of GaN-Based Light-Emitting Diodes by Using Omnidirectional Sidewall Reflectors. IEEE Photonics Technology Letters, 2007, 19, 1562-1564.	2.5	11
86	Electron-beam excitation. Nature Photonics, 2010, 4, 735-736.	31.4	11
87	Analysis of reverse tunnelling current in GalnN light-emitting diodes. Electronics Letters, 2010, 46, 156.	1.0	11
88	Effect of characteristic properties of graphene oxide on reduced graphene oxide/Si schottky diodes performance. Materials Science in Semiconductor Processing, 2016, 44, 1-7.	4.0	11
89	Observation of space-charge-limited current in AlGaN/GaN ultraviolet light-emitting diodes. Materials Letters, 2018, 214, 217-219.	2.6	11
90	Demonstration of optical interference filters utilizing tunable refractive index layers. Optics Express, 2010, 18, A594.	3.4	10

#	Article	IF	Citations
91	Junction temperature rise due to self-heating effects in GalnN blue light-emitting diodes. Thin Solid Films, 2017, 641, 8-11.	1.8	10
92	Changes in physical properties of graphene oxide with thermal reduction. Journal of the Korean Physical Society, 2017, 71, 156-160.	0.7	10
93	Genetic Algorithm for Innovative Device Designs in High-Efficiency III–V Nitride Light-Emitting Diodes. Applied Physics Express, 2012, 5, 012102.	2.4	9
94	Reduction of efficiency droop in GalnN/GaN light-emitting diodes with thick AlGaN cladding layers. Electronic Materials Letters, 2012, 8, 1-4.	2.2	9
95	Reduced junction temperature and enhanced performance of high power light-emitting diodes using reduced graphene oxide pattern. Journal Physics D: Applied Physics, 2015, 48, 265102.	2.8	9
96	Optically functional surface structures for GaN-based light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 8134.	5.5	8
97	Nanoparticle Embedded p-Type Electrodes for GaN-Based Flip-Chip Light Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2006, 6, 3547-3550.	0.9	7
98	Effects of p-Electrode Reflectivity on Extraction Efficiency of Nitride-Based Light-Emitting Diodes. Applied Physics Express, 0, 1, 052001.	2.4	7
99	Emission pattern control and polarized light emission through patterned graded-refractive-index coatings on GalnN light-emitting diodes. Optics Express, 2012, 20, 16677.	3.4	7
100	Tailored Nanoporous Coatings Fabricated on Conformable Polymer Substrates. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6295-6301.	8.0	7
101	Determination of Schottky barrier height of graphene electrode on AlGaN/GaN heterostructure. AIP Advances, 2021, 11, .	1.3	7
102	Solar-blind ultraviolet photodetectors with thermally reduced graphene oxide formed on high-Al-content AlGaN layers. AIP Advances, 2021, 11, .	1.3	7
103	Carrier Transport Mechanism of Pd/Pt/Au Ohmic Contacts to p-GaN in InGaN Laser Diode. Physica Status Solidi A, 2002, 194, 587-590.	1.7	6
104	Electrical and optical characterization of GaN-based light-emitting diodes fabricated with top-emission and flip-chip structures. Materials Science in Semiconductor Processing, 2010, 13, 180-184.	4.0	6
105	Ultra-high transmittance through nanostructure-coated glass for solar cell applications. , 2011, , .		6
106	Enhanced phosphor conversion efficiency of GaN-based white light-emitting diodes having dichroic-filtering contacts. Journal of Materials Chemistry C, 2013, 1, 5733.	5.5	6
107	Strong correlation between capacitance and breakdown voltage of GalnN/GaN light-emitting diodes. Electronic Materials Letters, 2014, 10, 1155-1157.	2.2	6
108	Study of UV excited white light-emitting diodes for optimization of luminous efficiency and color rendering index. Physica Status Solidi - Rapid Research Letters, 2009, 3, 34-36.	2.4	5

#	Article	IF	Citations
109	Electrical and optical properties of nickel thin-films fabricated by using oblique-angle deposition. Journal of the Korean Physical Society, 2016, 68, 839-841.	0.7	5
110	Low resistance and highly reflective Cu–Ni solid solution/Ag ohmic contacts to p-GaN for flip-chip light emitting diodes. Physica Status Solidi A, 2004, 201, 2823-2826.	1.7	4
111	Analysis of parasitic cyan luminescence occurring in GalnN blue light-emitting diodes. Journal of Applied Physics, 2012, 112, 074512.	2.5	4
112	Development of large area nanostructure antireflection coatings for EO/IR sensor applications. Proceedings of SPIE, 2012, , .	0.8	4
113	Efficiency droop in gallium indium nitride (GalnN)/gallium nitride (GaN) LEDs. , 2014, , 279-300.		4
114	Color rendering ability and luminous efficacy enhancements in white light-emitting diodes. , 2009, , .		3
115	Distinct U-shape efficiency-versus-current curves in AlGaN-based deep-ultraviolet light-emitting diodes. Optics Express, 2015, 23, 15398.	3.4	3
116	Effects of surface passivation dielectrics on carrier transport in AlGaN/GaN heterostructure field-effect transistors. AIP Advances, 2018, 8, .	1.3	3
117	Polarized ultraviolet emitters with Al wire-grid polarizers fabricated by solvent-assisted nanotransfer process. Nanotechnology, 2020, 31, 045304.	2.6	3
118	Analysis of high-power packages for white-light-emitting diode lamps with remote phosphor. Materials Research Society Symposia Proceedings, 2005, 892, 166.	0.1	2
119	GaN Light-Emitting Triodes for High-Efficiency Hole Injection. Journal of the Electrochemical Society, 2006, 153, G734.	2.9	2
120	High-voltage quantum well waveguide solar cells. Proceedings of SPIE, 2011, , .	0.8	2
121	Enhanced lightâ€extraction from a GaN waveguide using microâ€pillar TiO ₂ SiO ₂ gradedâ€refractiveâ€index layers. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2277-2280.	1.8	2
122	Nanostructured Transparent Conductive Oxides for Photovoltaic Applications. Materials Research Society Symposia Proceedings, 2013, 1493, 23-28.	0.1	2
123	Mesa-Free III-V Nitride Light-Emitting Diodes with Flat Surface. ECS Solid State Letters, 2014, 3, Q17-Q19.	1.4	2
124	Transient voltage suppressor diode designed for the protection of high-brightness GaN-based LEDs from various electrostatic discharge shocks. Journal of the Korean Physical Society, 2014, 65, 1106-1112.	0.7	2
125	Counter-intuitive junction temperature behavior in AlGaN-based deep-ultraviolet light-emitting diodes. AIP Advances, 2020, 10, 045135.	1.3	2
126	Effects of Dielectric Passivation on Device Performance of AlGaN/GaN High-Electron-Mobility Transistors. ECS Journal of Solid State Science and Technology, 2021, 10, 055016.	1.8	2

#	Article	IF	CITATIONS
127	Effects of SiO2 passivation on the sheet carrier density of two-dimensional electron gas formed in the AlGaN/GaN interface. Japanese Journal of Applied Physics, 2020, 59, 101001.	1.5	2
128	Recent development of patterned structure light-emitting diodes. , 2005, , .		1
129	High quality tin zinc oxide/Ag ohmic contacts for UV flip-chip light-emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2133-2136.	0.8	1
130	Improved Emission Efficiency in InGaN Light-Emitting Diodes Using Reverse Bias in Pulsed Voltage Operation. IEEE Photonics Technology Letters, 2008, 20, 1190-1192.	2.5	1
131	Effect of a p-type ZnO insertion layer on the external quantum efficiency of GalnN light-emitting diodes. Applied Physics Express, 2015, 8, 092102.	2.4	1
132	GalnN-based light emitting diodes embedded with wire grid polarizers. Japanese Journal of Applied Physics, 2015, 54, 02BB02.	1.5	1
133	Temperature Dependence of Efficiency in GalnN/GaN Lightâ€Emitting Diodes with a GalnN Underlayer. International Journal of Applied Ceramic Technology, 2016, 13, 234-238.	2.1	1
134	Brighter and smarter LEDs via graded refractive indexes. SPIE Newsroom, 0, , .	0.1	1
135	GaN light-emitting triodes for high-efficiency hole injection and light emission., 2006, 6134, 130.		0
136	Enhancement of light extraction in GalnN light-emitting diodes by conductive omni-directional reflectors. , 2006, , .		0
137	Effect of chip geometry on breakdown voltage of GalnN light-emitting diodes. Electronics Letters, 2009, 45, 755.	1.0	0
138	Color tunable light-emitting diodes with modified pulse-width modulation. Physica Status Solidi - Rapid Research Letters, 2009, 3, 284-286.	2.4	0
139	Nanostructure-based antireflection coatings for EO/IR sensor applications. Proceedings of SPIE, 2010,	0.8	0
140	A complementary matching technique to reduce the variance of optical and electrical properties of lightâ€emitting diodes. Journal of the Society for Information Display, 2011, 19, 431-434.	2.1	0
141	Internal quantum efficiency in light-emitting diodes based on the width of efficiency-versus-carrier-concentration curve. , 2012, , .		0
142	Development of nanostructure based antireflection coatings for EO/IR sensor applications. Proceedings of SPIE, 2012, , .	0.8	0
143	S6-G4: High injection and efficiency droop in GalnN light-emitting diodes. , 2014, , .		0
144	Size dependence of silica nanospheres embedded in 385 nm ultraviolet light-emitting diodes on a far-field emission pattern. Optics Express, 2014, 22, A1553.	3.4	0

#	Article	IF	CITATIONS
145	Fabrication of tapered graded-refractive-index micropillars using ion-implanted-photoresist as an etch mask. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 021305.	2.1	O
146	U-shape phenomenon in the efficiency-versus-current curves in AlGaN-based deep-ultraviolet light-emitting diodes. , $2015, \ldots$		0
147	The beneficial effects of a p-type GalnN spacer layer on the efficiency of GalnN/GaN light-emitting diodes. Current Applied Physics, 2015, 15, 1222-1225.	2.4	O
148	Capacitance–Voltage Analysis of GalnN Light Emitting Diodes with a Polarization Matched Nanostructure. Journal of Computational and Theoretical Nanoscience, 2015, 12, 742-744.	0.4	0
149	Transfer or delivery of micro light-emitting diodes for light-emitting diode displays. AIP Advances, 2019, 9, 100901.	1.3	O
150	Self-protective GalnN-based light-emitting diodes with VO2 nanowires. Nanoscale, 2019, 11, 18444-18448.	5.6	0
151	Effects of electrochemical potentiostatic activation on carrier transport in AlGaN-based deep-ultraviolet light-emitting diodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, 023410.	2.1	O
152	On the symmetry of efficiency-versus-carrier-concentration curves in GalnN/GaN light-emitting diodes and relation to droop-causing mechanisms. , $2011, \dots$		0
153	A Matching Method to Reduce the Distribution of Optical and Electrical Properties of White Light-Emitting Diodes. Journal of Nanoelectronics and Optoelectronics, 2015, 10, 265-268.	0.5	O
154	Light Extraction Enhancement in GaN-Based Light-Emitting Diodes with Patterned Micro-Pillars. ECS Meeting Abstracts, 2016 , , .	0.0	0
155	Electrochemical Potentiostatic Activation for the Improvement of 270nm AlGaN-Based UV-C Light-Emitting Diodes. ECS Journal of Solid State Science and Technology, 0, , .	1.8	O