Hua Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603889/publications.pdf

Version: 2024-02-01

46 1,881 24
papers citations h-index

24 43
h-index g-index

47 47 all docs docs citations

47 times ranked 2615 citing authors

#	Article	IF	Citations
1	Microgel assembly: Fabrication, characteristics and application in tissue engineering and regenerative medicine. Bioactive Materials, 2022, 9, 105-119.	15.6	73
2	Dynamic Nanocomposite Microgel Assembly with Microporosity, Injectability, Tissueâ€Adhesion, and Sustained Drug Release Promotes Articular Cartilage Repair and Regeneration. Advanced Healthcare Materials, 2022, 11, e2102395.	7.6	27
3	Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting. ACS Applied Materials & amp; Interfaces, 2022, 14, 15653-15666.	8.0	32
4	A Three-Dimensional-Printed Recyclable, Flexible, and Wearable Device for Visualized UV, Temperature, and Sweat pH Sensing. ACS Omega, 2022, 7, 9834-9845.	3.5	10
5	A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds <i>via</i> combination of 3D printing and stimuli-responsive hydrogels. Materials Horizons, 2022, 9, 2393-2407.	12.2	23
6	Multi-compartment Organ-on-a-Chip Based on Electrospun Nanofiber Membrane as In Vitro Jaundice Disease Model. Advanced Fiber Materials, 2021, 3, 383-393.	16.1	16
7	In Situ Formation of Microgel Array Via Patterned Electrospun Nanofibers Promotes 3D Cell Culture and Drug Testing in a Microphysiological System. ACS Applied Bio Materials, 2021, 4, 6209-6218.	4.6	2
8	Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary. ACS Biomaterials Science and Engineering, 2021, 7, 4971-4981.	5.2	9
9	3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration. Bioactive Materials, 2021, 6, 3396-3410.	15.6	110
10	Tubular Silk Fibroin/Gelatin-Tyramine Hydrogel with Controllable Layer Structure and Its Potential Application for Tissue Engineering. ACS Biomaterials Science and Engineering, 2020, 6, 6896-6905.	5.2	16
11	Engineered macroporous hydrogel scaffolds <i>via</i> pickering emulsions stabilized by MgO nanoparticles promote bone regeneration. Journal of Materials Chemistry B, 2020, 8, 6100-6114.	5.8	23
12	Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels. Biofabrication, 2020, 12, 035007.	7.1	25
13	A medical adhesive used in a wet environment by blending tannic acid and silk fibroin. Biomaterials Science, 2020, 8, 2694-2701.	5.4	46
14	Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis: Insights from a microgel model. Acta Biomaterialia, 2020, 113, 393-406.	8.3	37
15	Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core–Shell Segmental Configuration for Wearable Strain and Temperature Sensors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7565-7574.	8.0	114
16	Injection and Selfâ€Assembly of Bioinspired Stem Cellâ€Laden Gelatin/Hyaluronic Acid Hybrid Microgels Promote Cartilage Repair In Vivo. Advanced Functional Materials, 2019, 29, 1906690.	14.9	82
17	Combining 3D sidewall electrodes and contraction/expansion microstructures in microchip promotes isolation of cancer cells from red blood cells. Talanta, 2019, 196, 546-555.	5.5	23
18	Patterning Multi-Nanostructured Poly(l-lactic acid) Fibrous Matrices to Manipulate Biomolecule Distribution and Functions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8465-8473.	8.0	5

#	Article	IF	CITATIONS
19	Engineered Fe(OH) ₃ nanoparticle-coated and rhBMP-2-releasing PLGA microsphere scaffolds for promoting bone regeneration by facilitating cell homing and osteogenic differentiation. Journal of Materials Chemistry B, 2018, 6, 2831-2842.	5.8	15
20	Tannic acid-derived metal-phenolic networks facilitate PCL nanofiber mesh vascularization by promoting the adhesion and spreading of endothelial cells. Journal of Materials Chemistry B, 2018, 6, 2734-2738.	5.8	32
21	Alginate based antimicrobial hydrogels formed by integrating Diels–Alder "click chemistry―and the thiol–ene reaction. RSC Advances, 2018, 8, 11036-11042.	3.6	45
22	A Hyaluronic Acid Based Injectable Hydrogel Formed via Photo-Crosslinking Reaction and Thermal-Induced Diels-Alder Reaction for Cartilage Tissue Engineering. Polymers, 2018, 10, 949.	4.5	45
23	Reversibly Reconfigurable Cross-Linking Induces Fusion of Separate Chitosan Hydrogel Films. ACS Applied Bio Materials, 2018, 1, 1695-1704.	4.6	12
24	Effective Enzyme Coimmobilization and Synergistic Catalysis on Hierarchically Porous Inorganic/Organic Hybrid Microbeads Fabricated Via Dropletâ€Based Microfluidics. Macromolecular Chemistry and Physics, 2018, 219, 1800106.	2.2	3
25	Reversible Programing of Soft Matter with Reconfigurable Mechanical Properties. Advanced Functional Materials, 2017, 27, 1605665.	14.9	46
26	High-throughput generation of hyaluronic acid microgels via microfluidics-assisted enzymatic crosslinking and/or Diels–Alder click chemistry for cell encapsulation and delivery. Applied Materials Today, 2017, 9, 49-59.	4.3	49
27	A hydrogel actuator with flexible folding deformation and shape programming via using sodium carboxymethyl cellulose and acrylic acid. Carbohydrate Polymers, 2017, 173, 526-534.	10.2	22
28	High strength, biocompatible hydrogels with designable shapes and special hollow-formed character using chitosan and gelatin. Carbohydrate Polymers, 2017, 168, 147-152.	10.2	44
29	Patterning Electrospun Nanofibers via Agarose Hydrogel Stamps to Spatially Coordinate Cell Orientation in Microfluidic Device. Small, 2017, 13, 1602610.	10.0	25
30	Effective Cell and Particle Sorting and Separation in Screen-Printed Continuous-Flow Microfluidic Devices with 3D Sidewall Electrodes. Industrial & Engineering Chemistry Research, 2016, 55, 13085-13093.	3.7	10
31	One-step fabrication of inorganic/organic hybrid microspheres with tunable surface texture for controlled drug release application. Journal of Materials Science: Materials in Medicine, 2016, 27, 7.	3.6	21
32	Enhancement of Enzymatic Activity Using Microfabricated Poly(ε-caprolactone)/Silica Hybrid Microspheres with Hierarchically Porous Architecture. Journal of Physical Chemistry C, 2016, 120, 3955-3963.	3.1	20
33	Polymyxin B immobilized on cross-linked cellulose microspheres for endotoxin adsorption. Carbohydrate Polymers, 2016, 136, 12-18.	10.2	40
34	A Novel Electrochemical Immunosensor Incorporating a Pyrrole/4-(3-Pyrrolyl) Butyric Acid Conducting Polymer. Analytical Letters, 2015, 48, 477-488.	1.8	6
35	In situ microfluidic fabrication of multi-shape inorganic/organic hybrid particles with controllable surface texture and porous internal structure. RSC Advances, 2015, 5, 12872-12878.	3.6	10
36	Effective Spatial Separation of PC12 and NIH3T3 Cells by the Microgrooved Surface of Biocompatible Polymer Substrates. Langmuir, 2015, 31, 6797-6806.	3.5	17

#	Article	IF	Citations
37	Controllable microfluidic fabrication of Janus and microcapsule particles for drug delivery applications. RSC Advances, 2015, 5, 23181-23188.	3.6	77
38	Microgrooved Polymer Substrates Promote Collective Cell Migration To Accelerate Fracture Healing in an <i>in Vitro</i> Model. ACS Applied Materials & Interfaces, 2015, 7, 23336-23345.	8.0	53
39	One-step fabrication of polymeric hybrid particles with core–shell, patchy, patchy Janus and Janus architectures via a microfluidic-assisted phase separation process. RSC Advances, 2015, 5, 79969-79975.	3.6	27
40	Screen-printed microfluidic dielectrophoresis chip for cell separation. Biosensors and Bioelectronics, 2015, 63, 371-378.	10.1	59
41	Adjustableâ€Stiffness Films via Integrated Thermal Modulation. Macromolecular Materials and Engineering, 2010, 295, 735-741.	3.6	2
42	The enhanced mechanical properties of a covalently bound chitosanâ€multiwalled carbon nanotube nanocomposite. Journal of Applied Polymer Science, 2009, 113, 466-472.	2.6	72
43	An in situ electrochemical surface plasmon resonance immunosensor with polypyrrole propylic acid film: Comparison between SPR and electrochemical responses from polymer formation to protein immunosensing. Biosensors and Bioelectronics, 2008, 23, 1055-1062.	10.1	81
44	Screen-printed microfluidic device for electrochemical immunoassay. Lab on A Chip, 2007, 7, 1752.	6.0	106
45	Tailoring Zinc Oxide Nanowires for High Performance Amperometric Glucose Sensor. Electroanalysis, 2007, 19, 1008-1014.	2.9	190
46	Sensitive Amperometric Immunosensing Using Polypyrrolepropylic Acid Films for Biomolecule Immobilization. Analytical Chemistry, 2006, 78, 7424-7431.	6.5	79