J P Dunne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603751/publications.pdf

Version: 2024-02-01

165	21,960	67 h-index	141
papers	citations		g-index
193	193	193	20665
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Variability of the ocean carbon cycle in response to the North Atlantic Oscillation. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 18738.	0.8	27
2	Using Timescales of Deficit and Residence to Evaluate Nearâ€Bottom Dissolved Oxygen Variation in Coastal Seas. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	10
3	Oceanic and Atmospheric Drivers of Postâ€Elâ€Niño Chlorophyll Rebound in the Equatorial Pacific. Geophysical Research Letters, 2022, 49, .	1.5	5
4	Regional sensitivity patterns of Arctic Ocean acidification revealed with machine learning. Communications Earth & Environment, 2022, 3, .	2.6	2
5	Trophic level decoupling drives future changes in phytoplankton bloom phenology. Nature Climate Change, 2022, 12, 469-476.	8.1	15
6	Regional projection of climate warming effects on coastal seas in east China. Environmental Research Letters, 2022, 17, 074006.	2.2	2
7	Global ecological and biogeochemical impacts of pelagic tunicates. Progress in Oceanography, 2022, 205, 102822.	1.5	24
8	Quantifying the Role of Seasonality in the Marine Carbon Cycle Feedback: An ESM2M Case Study. Global Biogeochemical Cycles, 2022, 36, .	1.9	5
9	Mechanisms driving ESM-based marine ecosystem predictive skill on the east African coast. Environmental Research Letters, 2022, 17, 084004.	2.2	1
10	Toward a better understanding of fishâ€based contribution to ocean carbon flux. Limnology and Oceanography, 2021, 66, 1639-1664.	1.6	106
11	Predictable Variations of the Carbon Sinks and Atmospheric CO ₂ Growth in a Multiâ€Model Framework. Geophysical Research Letters, 2021, 48, e2020GL090695.	1.5	17
12	Quantifying global potential for coral evolutionary response to climate change. Nature Climate Change, 2021, 11, 537-542.	8.1	42
13	Simulated Global Coastal Ecosystem Responses to a Halfâ€Century Increase in River Nitrogen Loads. Geophysical Research Letters, 2021, 48, e2021GL094367.	1.5	22
14	An Atmospheric Constraint on the Seasonal Airâ€Sea Exchange of Oxygen and Heat in the Extratropics. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017510.	1.0	2
15	Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 2021, 11, 973-981.	8.1	96
16	Importance of wind and meltwater for observed chemical and physical changes in the Southern Ocean. Nature Geoscience, 2020, 13, 35-42.	5.4	42
17	Contrasting Upper and Deep Ocean Oxygen Response to Protracted Global Warming. Global Biogeochemical Cycles, 2020, 34, e2020GB006601.	1.9	24
18	Time of Emergence and Large Ensemble Intercomparison for Ocean Biogeochemical Trends. Global Biogeochemical Cycles, 2020, 34, e2019GB006453.	1.9	33

#	Article	IF	CITATIONS
19	Comparison of Equilibrium Climate Sensitivity Estimates From Slab Ocean, 150â€Year, and Longer Simulations. Geophysical Research Letters, 2020, 47, e2020GL088852.	1.5	16
20	Simple Global Ocean Biogeochemistry With Light, Iron, Nutrients and Gas Version 2 (BLINGv2): Model Description and Simulation Characteristics in GFDL's CM4.0. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002008.	1.3	24
21	The GFDL Global Atmospheric Chemistryâ€Climate Model AM4.1: Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002032.	1.3	51
22	Ocean Biogeochemistry in GFDL's Earth System Model 4.1 and Its Response to Increasing Atmospheric CO ₂ . Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002043.	1.3	70
23	Tracking Improvement in Simulated Marine Biogeochemistry Between CMIP5 and CMIP6. Current Climate Change Reports, 2020, 6, 95-119.	2.8	155
24	The GFDL Earth System Model Version 4.1 (GFDLâ€ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002015.	1.3	277
25	Potential predictability of marine ecosystem drivers. Biogeosciences, 2020, 17, 2061-2083.	1.3	24
26	Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences, 2020, 17, 3439-3470.	1.3	348
27	Microbial evolutionary strategies in a dynamic ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5943-5948.	3.3	29
28	Climate Sensitivity of GFDL's CM4.0. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001838.	1.3	17
29	Emergence of anthropogenic signals in the ocean carbon cycle. Nature Climate Change, 2019, 9, 719-725.	8.1	54
30	Seasonal to multiannual marine ecosystem prediction with a global Earth system model. Science, 2019, 365, 284-288.	6.0	63
31	The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features. Journal of Advances in Modeling Earth Systems, 2019, 11, 3167-3211.	1.3	195
32	Structure and Performance of GFDL's CM4.0 Climate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 3691-3727.	1.3	242
33	The Equatorial Undercurrent and the Oxygen Minimum Zone in the Pacific. Geophysical Research Letters, 2019, 46, 6716-6725.	1.5	35
34	Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12907-12912.	3.3	357
35	Carbon cycling in the North American coastal ocean: a synthesis. Biogeosciences, 2019, 16, 1281-1304.	1.3	45
36	Hot Spots of Carbon and Alkalinity Cycling in the Coastal Oceans. Scientific Reports, 2019, 9, 4434.	1.6	20

#	Article	IF	CITATIONS
37	Estimating Airâ€5ea Carbon Flux Uncertainty Over the Tropical Pacific: Importance of Winds and Wind Analysis Uncertainty. Global Biogeochemical Cycles, 2019, 33, 370-390.	1.9	11
38	Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition. Scientific Reports, 2019, 9, 20244.	1.6	26
39	Simulating Water Residence Time in the Coastal Ocean: A Global Perspective. Geophysical Research Letters, 2019, 46, 13910-13919.	1.5	41
40	Reduced CaCO 3 Flux to the Seafloor and Weaker Bottom Current Speeds Curtail Benthic CaCO 3 Dissolution Over the 21st Century. Global Biogeochemical Cycles, 2019, 33, 1654-1673.	1.9	1
41	Seasonal to interannual predictability of oceanic net primary production inferred from satellite observations. Progress in Oceanography, 2019, 170, 28-39.	1.5	26
42	Surface winds from atmospheric reanalysis lead to contrasting oceanic forcing and coastal upwelling patterns. Ocean Modelling, 2019, 133, 79-111.	1.0	20
43	The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 2. Model Description, Sensitivity Studies, and Tuning Strategies. Journal of Advances in Modeling Earth Systems, 2018, 10, 735-769.	1.3	185
44	The GFDL Global Atmosphere and Land Model AM4.0/LM4.0: 1. Simulation Characteristics With Prescribed SSTs. Journal of Advances in Modeling Earth Systems, 2018, 10, 691-734.	1.3	155
45	Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Ecological Applications, 2018, 28, 749-760.	1.8	116
46	Biogeochemical Role of Subsurface Coherent Eddies in the Ocean: Tracer Cannonballs, Hypoxic Storms, and Microbial Stewpots?. Global Biogeochemical Cycles, 2018, 32, 226-249.	1.9	53
47	Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study. Geophysical Research Letters, 2018, 45, 1939-1947.	1.5	23
48	Modeling Global Ocean Biogeochemistry With Physical Data Assimilation: A Pragmatic Solution to the Equatorial Instability. Journal of Advances in Modeling Earth Systems, 2018, 10, 891-906.	1.3	35
49	Roles of the Ocean Mesoscale in the Horizontal Supply of Mass, Heat, Carbon, and Nutrients to the Northern Hemisphere Subtropical Gyres. Journal of Geophysical Research: Oceans, 2018, 123, 7016-7036.	1.0	18
50	Glacial Iron Sources Stimulate the Southern Ocean Carbon Cycle. Geophysical Research Letters, 2018, 45, 13,377.	1.5	27
51	Simulating the ocean's chlorophyll dynamic range from coastal upwelling to oligotrophy. Progress in Oceanography, 2018, 168, 232-247.	1.5	28
52	Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition. Nature, 2018, 563, 105-108.	13.7	50
53	Rapid coastal deoxygenation due to ocean circulation shift in the northwest Atlantic. Nature Climate Change, 2018, 8, 868-872.	8.1	69
54	Response of O ₂ and pH to ENSO in the California Current System in a high-resolution global climate model. Ocean Science, 2018, 14, 69-86.	1.3	23

#	Article	lF	Citations
55	A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geoscientific Model Development, 2018, 11, 1421-1442.	1.3	116
56	The Mechanistic Role of the Central American Seaway in a GFDL Earth System Model. Part 1: Impacts on Global Ocean Mean State and Circulation. Paleoceanography and Paleoclimatology, 2018, 33, 840-859.	1.3	7
57	Reconciling fisheries catch and ocean productivity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1441-E1449.	3.3	195
58	Temperature and oxygen dependence of the remineralization of organic matter. Global Biogeochemical Cycles, 2017, 31, 1038-1050.	1.9	86
59	Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nature Ecology and Evolution, 2017, 1, 1240-1249.	3.4	161
60	Projections of climateâ€driven changes in tuna vertical habitat based on speciesâ€specific differences in blood oxygen affinity. Global Change Biology, 2017, 23, 4019-4028.	4.2	33
61	Annual nitrate drawdown observed by <scp>SOCCOM</scp> profiling floats and the relationship to annual net community production. Journal of Geophysical Research: Oceans, 2017, 122, 6668-6683.	1.0	54
62	Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geoscientific Model Development, 2017, 10, 2169-2199.	1.3	137
63	C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development, 2016, 9, 2853-2880.	1.3	186
64	Challenges in modeling spatiotemporally varying phytoplankton blooms in the Northwestern Arabian Sea and Gulf of Oman. Biogeosciences, 2016 , 13 , $1049-1069$.	1.3	7
65	Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment. Geoscientific Model Development, 2016, 9, 1827-1851.	1.3	68
66	Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences, 2016, 13, 4023-4047.	1.3	106
67	The fundamental niche of blood oxygen binding in the pelagic ocean. Oikos, 2016, 125, 938-949.	1.2	8
68	Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models. Journal of Geophysical Research: Oceans, 2016, 121, 8635-8669.	1.0	34
69	How well do global ocean biogeochemistry models simulate dissolved iron distributions?. Global Biogeochemical Cycles, 2016, 30, 149-174.	1.9	230
70	Evaluating CMIP5 ocean biogeochemistry and Southern Ocean carbon uptake using atmospheric potential oxygen: Presentâ€day performance and future projection. Geophysical Research Letters, 2016, 43, 2077-2085.	1.5	22
71	Quantifying uncertainty in future ocean carbon uptake. Global Biogeochemical Cycles, 2016, 30, 1563-1565.	1.9	2
72	Multidecadal windâ€driven shifts in northwest Pacific temperature, salinity, O ₂ , and PO ₄ . Global Biogeochemical Cycles, 2016, 30, 1599-1619.	1.9	6

#	Article	IF	CITATIONS
73	When can ocean acidification impacts be detected from decadal alkalinity measurements?. Global Biogeochemical Cycles, 2016, 30, 595-612.	1.9	17
74	Annual cycles of phytoplankton biomass in the subarctic Atlantic and Pacific Ocean. Global Biogeochemical Cycles, 2016, 30, 175-190.	1.9	71
75	Enhanced Atlantic sea-level rise relative to the Pacific under high carbon emission rates. Nature Geoscience, 2016, 9, 210-214.	5.4	24
76	On the Southern Ocean CO ₂ uptake and the role of the biological carbon pump in the 21st century. Global Biogeochemical Cycles, 2015, 29, 1451-1470.	1.9	85
77	Poleward displacement of coastal upwellingâ€favorable winds in the ocean's eastern boundary currents through the 21st century. Geophysical Research Letters, 2015, 42, 6424-6431.	1.5	181
78	A more productive, but different, ocean after mitigation. Geophysical Research Letters, 2015, 42, 9836-9845.	1.5	22
79	Complex functionality with minimal computation: Promise and pitfalls of reducedâ€tracer ocean biogeochemistry models. Journal of Advances in Modeling Earth Systems, 2015, 7, 2012-2028.	1.3	49
80	Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences, 2015, 12, 6955-6984.	1.3	252
81	Evaluating Southern Ocean biological production in two ocean biogeochemical models on daily to seasonal timescales using satellite chlorophyll and O ₂ / Ar observations. Biogeosciences, 2015, 12, 681-695.	1.3	2
82	Evaluating the ocean biogeochemical components of Earth system models using atmospheric potential oxygen and ocean color data. Biogeosciences, 2015, 12, 193-208.	1.3	16
83	Corrigendum to "Evaluating the ocean biogeochemical components of Earth system models using atmospheric potential oxygen and ocean color data" published in Biogeosciences, 12, 193–208, 2015. Biogeosciences, 2015, 12, 2891-2891.	1.3	0
84	Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15591-15596.	3.3	92
85	Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models. Journal of Climate, 2015, 28, 952-977.	1.2	292
86	Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. Journal of Climate, 2015, 28, 862-886.	1.2	432
87	Role of Mesoscale Eddies in Cross-Frontal Transport of Heat and Biogeochemical Tracers in the Southern Ocean. Journal of Physical Oceanography, 2015, 45, 3057-3081.	0.7	94
88	A roadmap on ecosystem change. Nature Climate Change, 2015, 5, 20-21.	8.1	3
89	Climate change impacts on leatherback turtle pelagic habitat in the Southeast Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 113, 260-267.	0.6	31
90	Trajectory sensitivity of the transient climate response to cumulative carbon emissions. Geophysical Research Letters, 2014, 41, 2520-2527.	1.5	41

#	Article	IF	Citations
91	Air–sea CO ₂ flux in the Pacific Ocean for the period 1990–2009. Biogeosciences, 2014, 11, 709-734.	1.3	68
92	Drivers of trophic amplification of ocean productivity trends in a changing climate. Biogeosciences, 2014, 11, 7125-7135.	1.3	86
93	Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk. Biogeosciences, 2014, 11, 6955-6967.	1.3	49
94	Group behavior among model bacteria influences particulate carbon remineralization depths. Journal of Marine Research, 2014, 72, 183-218.	0.3	21
95	Incorporating adaptive responses into future projections of coral bleaching. Global Change Biology, 2014, 20, 125-139.	4.2	203
96	Global-scale carbon and energy flows through the marine planktonic food web: An analysis with a coupled physical–biological model. Progress in Oceanography, 2014, 120, 1-28.	1.5	183
97	Connecting Atlantic temperature variability and biological cycling in two earth system models. Journal of Marine Systems, 2014, 133, 39-54.	0.9	12
98	Deconvolving the controls on the deep ocean's silicon stable isotope distribution. Earth and Planetary Science Letters, 2014, 398, 66-76.	1.8	37
99	Physical drivers of interannual chlorophyll variability in the eastern subtropical North Atlantic. Journal of Geophysical Research: Oceans, 2013, 118, 3871-3886.	1.0	30
100	Climate-induced primary productivity change and fishing impacts on the Central North Pacific ecosystem and Hawaii-based pelagic longline fishery. Climatic Change, 2013, 119, 79-93.	1.7	24
101	Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change, 2013, 3, 254-258.	8.1	527
102	Predicted habitat shifts of Pacific top predators in a changing climate. Nature Climate Change, 2013, 3, 234-238.	8.1	390
103	Reductions in labour capacity from heat stress under climate warming. Nature Climate Change, 2013, 3, 563-566.	8.1	407
104	Role of mode and intermediate waters in future ocean acidification: Analysis of CMIP5 models. Geophysical Research Letters, 2013, 40, 3091-3095.	1.5	31
105	A comparison of methods to determine phytoplankton bloom initiation. Journal of Geophysical Research: Oceans, 2013, 118, 2345-2357.	1.0	110
106	Evaluation of the Southern Ocean O ₂ /Arâ€based NCP estimates in a model framework. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 385-399.	1.3	45
107	GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics*. Journal of Climate, 2013, 26, 2247-2267.	1.2	540
108	Sensitivity of Twenty-First-Century Global-Mean Steric Sea Level Rise to Ocean Model Formulation. Journal of Climate, 2013, 26, 2947-2956.	1.2	25

#	Article	IF	Citations
109	Ecosystem size structure response to 21st century climate projection: large fish abundance decreases in the central <scp>N</scp> orth <scp>P</scp> acific and increases in the <scp>C</scp> alifornia <scp>C</scp> urrent. Global Change Biology, 2013, 19, 724-733.	4.2	60
110	Future Arctic Ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms. Global Biogeochemical Cycles, 2013, 27, 605-619.	1.9	185
111	Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences, 2013, 10, 1849-1868.	1.3	140
112	Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 2013, 10, 6225-6245.	1.3	1,191
113	Factors challenging our ability to detect long-term trends in ocean chlorophyll. Biogeosciences, 2013, 10, 2711-2724.	1.3	79
114	GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 2012, 25, 6646-6665.	1.2	972
115	Climate versus emission drivers of methane lifetime against loss by tropospheric OH from 1860–2100. Atmospheric Chemistry and Physics, 2012, 12, 12021-12036.	1.9	54
116	Global calcite cycling constrained by sediment preservation controls. Global Biogeochemical Cycles, 2012, 26, .	1.9	57
117	Dataâ€based estimates of suboxia, denitrification, and N ₂ O production in the ocean and their sensitivities to dissolved O ₂ . Global Biogeochemical Cycles, 2012, 26, .	1.9	183
118	Understanding why the volume of suboxic waters does not increase over centuries of global warming in an Earth System Model. Biogeosciences, 2012, 9, 1159-1172.	1.3	62
119	Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES Journal of Marine Science, 2011, 68, 1008-1018.	1.2	253
120	Models of iron speciation and concentration in the stratified epipelagic ocean. Geophysical Research Letters, 2011, 38, .	1.5	3
121	A measured look at ocean chlorophyll trends. Nature, 2011, 472, E5-E6.	13.7	63
122	On the use of IPCC-class models to assess the impact of climate on Living Marine Resources. Progress in Oceanography, 2011, 88, 1-27.	1.5	272
123	What ocean biogeochemical models can tell us about bottom-up control of ecosystem variability. ICES Journal of Marine Science, 2011, 68, 1030-1044.	1.2	24
124	Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming. ICES Journal of Marine Science, 2011, 68, 986-995.	1.2	140
125	Climate Variability and Radiocarbon in the CM2Mc Earth System Model. Journal of Climate, 2011, 24, 4230-4254.	1.2	88
126	Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries. ICES Journal of Marine Science, 2011, 68, 1217-1229.	1.2	159

#	Article	IF	CITATIONS
127	Regional impacts of iron-light colimitation in a global biogeochemical model. Biogeosciences, 2010, 7, 1043-1064.	1.3	152
128	Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences, 2010, 7, 621-640.	1.3	360
129	Efficiency of small scale carbon mitigation by patch iron fertilization. Biogeosciences, 2010, 7, 3593-3624.	1.3	64
130	Challenges of modeling depthâ€integrated marine primary productivity over multiple decades: A case study at BATS and HOT. Global Biogeochemical Cycles, 2010, 24, .	1.9	150
131	Simulations of underwater plumes of dissolved oil in the Gulf of Mexico. Geophysical Research Letters, 2010, 37, .	1.5	72
132	Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model. Geophysical Research Letters, 2010, 37, .	1.5	163
133	Controls on the ratio of mesozooplankton production to primary production in marine ecosystems. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57, 95-112.	0.6	53
134	Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. Journal of Marine Systems, 2009, 76, 113-133.	0.9	212
135	Database-driven models of the world's Large Marine Ecosystems. Ecological Modelling, 2009, 220, 1984-1996.	1.2	71
136	Decadal variability in biogeochemical models: Comparison with a 50â€year ocean colour dataset. Geophysical Research Letters, 2009, 36, .	1.5	20
137	Correction to "Using altimetry to help explain patchy changes in hydrographic carbon measurements― Journal of Geophysical Research, 2009, 114, .	3.3	0
138	Decadal variability in North Atlantic phytoplankton blooms. Journal of Geophysical Research, 2009, 114, .	3.3	224
139	Using altimetry to help explain patchy changes in hydrographic carbon measurements. Journal of Geophysical Research, 2009, 114, .	3.3	14
140	Neutral aldoses as source indicators for marine snow. Marine Chemistry, 2008, 108, 195-206.	0.9	29
141	A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochemical Cycles, 2007, 21, .	1.9	464
142	Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups. Journal of Geophysical Research, 2007, 112, .	3.3	215
143	Impact of ocean color on the maintenance of the Pacific Cold Tongue. Geophysical Research Letters, 2007, 34, .	1.5	53
144	Spatial coupling of nitrogen inputs and losses in the ocean. Nature, 2007, 445, 163-167.	13.7	618

#	Article	IF	Citations
145	Spatial coupling of nitrogen inputs and losses in the ocean. Nature, 2007, 445, 163-167.	13.7	379
146	Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	1.9	199
147	A comparison of global estimates of marine primary production from ocean color. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 741-770.	0.6	574
148	GFDL's CM2 Global Coupled Climate Models. Part II: The Baseline Ocean Simulation. Journal of Climate, 2006, 19, 675-697.	1.2	269
149	Organic carbon to 234Th ratios of marine organic matter. Marine Chemistry, 2006, 100, 323-336.	0.9	50
150	GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics. Journal of Climate, 2006, 19, 643-674.	1.2	1,431
151	Formulation of an ocean model for global climate simulations. Ocean Science, 2005, 1, 45-79.	1.3	343
152	234Th, 210Pb, 210Po and stable Pb in the central equatorial Pacific: Tracers for particle cycling. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 2109-2139.	0.6	83
153	Empirical and mechanistic models for the particle export ratio. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	353
154	High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature, 2004, 427, 56-60.	13.7	1,090
155	Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	108
156	The Oceanic Remote Chemical/Optical Analyzer (ORCA)—An Autonomous Moored Profiler. Journal of Atmospheric and Oceanic Technology, 2002, 19, 1709-1721.	0.5	16
157	A new estimate of the CaCO3to organic carbon export ratio. Global Biogeochemical Cycles, 2002, 16, 54-1-54-12.	1.9	175
158	Biogeochemical controls on new production in the tropical Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49, 2619-2648.	0.6	29
159	Estimation of new production in the tropical Pacific. Global Biogeochemical Cycles, 2001, 15, 101-112.	1.9	44
160	Export flux in the western and central equatorial Pacific: zonal and temporal variability. Deep-Sea Research Part I: Oceanographic Research Papers, 2000, 47, 901-936.	0.6	51
161	Sensitivity of 234Th export to physical processes in the central equatorial Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 1999, 46, 831-854.	0.6	21
162	Silicon-nitrogen coupling in the equatorial Pacific upwelling zone. Global Biogeochemical Cycles, 1999, 13, 715-726.	1.9	41

J P DUNNE

#	Article	IF	CITATIONS
163	A meeting place of great ocean currents: shipboard observations of a convergent front at 2°N in the Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 1827-1849.	0.6	42
164	234Th and particle cycling in the central equatorial Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 2049-2083.	0.6	59
165	Export flux of particulate organic carbon from the central equatorial Pacific determined using a combined drifting trap-234Th approach. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43, 1095-1132.	0.6	200