Manuel A. Friese

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/660356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports, 2022, 17, 307-320.	4.8	138
2	A glibenclamide-sensitive TRPM4-mediated component of CA1 excitatory postsynaptic potentials appears in experimental autoimmune encephalomyelitis. Scientific Reports, 2022, 12, 6000.	3.3	5
3	Treating sarcoidosis-associated progressive multifocal leukoencephalopathy with infliximab. Brain Communications, 2022, 4, fcab292.	3.3	2
4	The immunology of multiple sclerosis. Nature Reviews Immunology, 2022, 22, 734-750.	22.7	96
5	Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nature Neuroscience, 2022, 25, 944-955.	14.8	55
6	Control of SARS-CoV-2 infection in rituximab-treated neuroimmunological patients. Journal of Neurology, 2021, 268, 5-7.	3.6	24
7	Activity-regulated cytoskeleton-associated protein/activity-regulated gene 3.1 (Arc/Arg3.1) enhances dendritic cell vaccination in experimental melanoma. Oncolmmunology, 2021, 10, 1920739.	4.6	2
8	Clinical Presentation and Disease Course of 37 Consecutive Cases of Progressive Multifocal Leukoencephalopathy (PML) at a German Tertiary-Care Hospital: A Retrospective Observational Study. Frontiers in Neurology, 2021, 12, 632535.	2.4	12
9	Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis. ELife, 2021, 10, .	6.0	34
10	Identifying CNS-colonizing T cells as potential therapeutic targets to prevent progression of multiple sclerosis. Med, 2021, 2, 296-312.e8.	4.4	43
11	Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. Journal of Experimental Medicine, 2021, 218, .	8.5	20
12	aHSCT is superior to alemtuzumab in maintaining NEDA and improving cognition in multiple sclerosis. Annals of Clinical and Translational Neurology, 2021, 8, 1269-1278.	3.7	16
13	SnapShot: Neuronal dysfunction in inflammation. Neuron, 2021, 109, 1754-1754.e1.	8.1	4
14	Multi-dimensional and longitudinal systems profiling reveals predictive pattern of severe COVID-19. IScience, 2021, 24, 102752.	4.1	9
15	Single-cell atlas of hepatic T cells reveals expansion of liver-resident naive-like CD4+ T cells in primary sclerosing cholangitis. Journal of Hepatology, 2021, 75, 414-423.	3.7	49
16	Intrathecal Antibody Production Against Epstein-Barr, Herpes Simplex, and Other Neurotropic Viruses in Autoimmune Encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	18
17	ldentification of the factor XII contact activation site enables sensitive coagulation diagnostics. Nature Communications, 2021, 12, 5596.	12.8	23
18	Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	38

MANUEL A. FRIESE

#	Article	IF	CITATIONS
19	Upregulation of Phosphodiesterase 2A Augments T Cell Activation by Changing cGMP/cAMP Cross-Talk. Frontiers in Pharmacology, 2021, 12, 748798.	3.5	11
20	CSF Findings in Acute NMDAR and LGI1 Antibody–Associated Autoimmune Encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	24
21	Motor neuron translatome reveals deregulation of SYNGR4 and PLEKHB1 in mutant TDP-43 amyotrophic lateral sclerosis models. Human Molecular Genetics, 2020, 29, 2647-2661.	2.9	15
22	Genetic determinants of the humoral immune response in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e827.	6.0	7
23	Voltage-Gated Proton Channel Hv1 Controls TLR9 Activation in Plasmacytoid Dendritic Cells. Journal of Immunology, 2020, 205, 3001-3010.	0.8	12
24	Moving exercise research in multiple sclerosis forward (the MoXFo initiative): Developing consensus statements for research. Multiple Sclerosis Journal, 2020, 26, 1303-1308.	3.0	46
25	A novel neurodegenerative spectrum disorder in patients with MLKL deficiency. Cell Death and Disease, 2020, 11, 303.	6.3	16
26	Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Communications, 2020, 2, fcaa205.	3.3	236
27	Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature, 2019, 573, 75-82.	27.8	385
28	T Cell Repertoire Dynamics during Pregnancy in Multiple Sclerosis. Cell Reports, 2019, 29, 810-815.e4.	6.4	17
29	Pregnancy Enables Expansion of Disease-Specific Regulatory T Cells in an Animal Model of Multiple Sclerosis. Journal of Immunology, 2019, 203, 1743-1752.	0.8	9
30	Bassoon proteinopathy drives neurodegeneration in multiple sclerosis. Nature Neuroscience, 2019, 22, 887-896.	14.8	55
31	Arc/Arg3.1 defines dendritic cells and Langerhans cells with superior migratory ability independent of phenotype and ontogeny in mice. European Journal of Immunology, 2019, 49, 724-736.	2.9	4
32	Progesterone modulates the T ell response via glucocorticoid receptorâ€dependent pathways. American Journal of Reproductive Immunology, 2019, 81, e13084.	1.2	40
33	Sex differences in autoimmune disorders of the central nervous system. Seminars in Immunopathology, 2019, 41, 177-188.	6.1	74
34	Production of IL-17 by MAIT Cells Is Increased in Multiple Sclerosis and Is Associated with IL-7 Receptor Expression. Journal of Immunology, 2018, 200, 974-982.	0.8	58
35	Male offspring born to mildly ZIKV-infected mice are at risk of developing neurocognitive disorders in adulthood. Nature Microbiology, 2018, 3, 1161-1174.	13.3	24
36	Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E181-E190.	7.1	86

MANUEL A. FRIESE

#	Article	IF	CITATIONS
37	Maraviroc as possible treatment for PML-IRIS in natalizumab-treated patients with MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e325.	6.0	18
38	Ruxolitinib treatment in a patient with neuromyelitis optica: A case report. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e328.	6.0	7
39	Prenatal Administration of Betamethasone Causes Changes in the T Cell Receptor Repertoire Influencing Development of Autoimmunity. Frontiers in Immunology, 2017, 8, 1505.	4.8	14
40	Arc/Arg3.1 governs inflammatory dendritic cell migration from the skin and thereby controls T cell activation. Science Immunology, 2016, 1, eaaf8665.	11.9	40
41	Sex effects on inflammatory and neurodegenerative processes in multiple sclerosis. Neuroscience and Biobehavioral Reviews, 2016, 67, 137-146.	6.1	45
42	Activity of NaV1.2 promotes neurodegeneration in an animal model of multiple sclerosis. JCI Insight, 2016, 1, e89810.	5.0	22
43	Immunopathology of multiple sclerosis. Nature Reviews Immunology, 2015, 15, 545-558.	22.7	1,642
44	Transient Receptor Potential Melastatin Subfamily Member 2 Cation Channel Regulates Detrimental Immune Cell Invasion in Ischemic Stroke. Stroke, 2014, 45, 3395-3402.	2.0	85
45	<scp>CD</scp> 8 ⁺ <scp>MAIT</scp> cells infiltrate into the <scp>CNS</scp> and alterations in their blood frequencies correlate with <scp>IL</scp> â€18 serum levels in multiple sclerosis. European Journal of Immunology, 2014, 44, 3119-3128.	2.9	137
46	Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nature Reviews Neurology, 2014, 10, 225-238.	10.1	507
47	Pregnancy and multiple sclerosis: feto-maternal immune cross talk and its implications for disease activity. Journal of Reproductive Immunology, 2013, 97, 140-146.	1.9	74
48	Neutrophils Amplify Autoimmune Central Nervous System Infiltrates by Maturing Local APCs. Journal of Immunology, 2013, 191, 4531-4539.	0.8	124
49	TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nature Medicine, 2012, 18, 1805-1811.	30.7	181
50	N-methyl-d-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain, 2010, 133, 1655-1667.	7.6	900
51	Opposing effects of HLA class I molecules in tuning autoreactive CD8+ T cells in multiple sclerosis. Nature Medicine, 2008, 14, 1227-1235.	30.7	161
52	Interleukin-17 Production in Central Nervous System-Infiltrating T Cells and Glial Cells Is Associated with Active Disease in Multiple Sclerosis. American Journal of Pathology, 2008, 172, 146-155.	3.8	1,018
53	T cells and microglia as drivers of multiple sclerosis pathology. Brain, 2007, 130, 2755-2757.	7.6	25
54	Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nature Medicine, 2007, 13, 1483-1489.	30.7	373

MANUEL A. FRIESE

#	Article	IF	CITATIONS
55	The value of animal models for drug development in multiple sclerosis. Brain, 2006, 129, 1940-1952.	7.6	133
56	Humanized mouse models for organ-specific autoimmune diseases. Current Opinion in Immunology, 2006, 18, 704-709.	5.5	32
57	Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy?. Brain, 2005, 128, 1747-1763.	7.6	232
58	MHC II molecules in inflammatory diseases: interplay of qualities and quantities. Trends in Immunology, 2005, 26, 559-561.	6.8	28
59	Neuronal Adenosine A1 Receptor is Critical for Olfactory Function but Unable to Attenuate Olfactory Dysfunction in Neuroinflammation. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	3
60	Alterations of NK Cell Phenotype During Pregnancy in Multiple Sclerosis. Frontiers in Immunology, 0, 13, .	4.8	6