John B Dickie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6603161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Banana seed genetic resources for food security: Status, constraints, and future priorities. Food and Energy Security, 2022, 11, e345.	4.3	6
2	More on seed longevity phenotyping. Seed Science Research, 2022, 32, 144-149.	1.7	11
3	Correlated evolution of seed mass and genome size varies among life forms in flowering plants. Seed Science Research, 2022, 32, 46-52.	1.7	12
4	Seed Banks as Incidental Fungi Banks: Fungal Endophyte Diversity in Stored Seeds of Banana Wild Relatives. Frontiers in Microbiology, 2021, 12, 643731.	3.5	12
5	Using seminatural and simulated habitats for seed germination ecology of banana wild relatives. Ecology and Evolution, 2021, 11, 14644-14657.	1.9	1
6	Plant Diversity Conservation Challenges and Prospects—The Perspective of Botanic Gardens and the Millennium Seed Bank. Plants, 2021, 10, 2371.	3.5	26
7	Challenges for Ex Situ Conservation of Wild Bananas: Seeds Collected in Papua New Guinea Have Variable Levels of Desiccation Tolerance. Plants, 2020, 9, 1243.	3.5	17
8	Plant and fungal collections: Current status, future perspectives. Plants People Planet, 2020, 2, 499-514.	3.3	38
9	Exploring seed longevity of UK native trees: implications for <i>ex situ</i> conservation. Seed Science Research, 2020, 30, 101-111.	1.7	6
10	Conserving orthodox seeds of globally threatened plants ex situ in the Millennium Seed Bank, Royal Botanic Gardens, Kew, UK: the status of seed collections. Biodiversity and Conservation, 2020, 29, 2901-2949.	2.6	39
11	Tradeâ€off between seed dispersal in space and time. Ecology Letters, 2020, 23, 1635-1642.	6.4	46
12	Seed storage: maintaining seed viability and vigor for restoration use. Restoration Ecology, 2020, 28, S249.	2.9	71
13	Macroevolutionary patterns in seed component mass and different evolutionary trajectories across seed desiccation responses. New Phytologist, 2020, 228, 770-777.	7.3	7
14	Regulation of seed germination by diurnally alternating temperatures in disturbance-adapted banana crop wild relatives (<i>Musa acuminata</i>). Seed Science Research, 2020, 30, 238-248.	1.7	8
15	A research agenda for seedâ€ŧrait functional ecology. New Phytologist, 2019, 221, 1764-1775.	7.3	218
16	Taxonomic affinity, habitat and seed mass strongly predict seed desiccation response: a boosted regression trees analysis based on 17 539 species. Annals of Botany, 2018, 121, 71-83.	2.9	35
17	Ecological correlates of seed dormancy differ among dormancy types: a case study in the legumes. New Phytologist, 2018, 217, 477-479.	7.3	11
18	Seed banking not an option for many threatened plants. Nature Plants, 2018, 4, 848-850.	9.3	62

Јони В Діскіе

#	Article	IF	CITATIONS
19	Predicting the global incidence of seed desiccation sensitivity. Journal of Ecology, 2017, 105, 1082-1093.	4.0	119
20	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	27.8	2,022
21	<scp>BHPMF</scp> – a hierarchical <scp>B</scp> ayesian approach to gapâ€filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, 2015, 24, 1510-1521.	5.8	132
22	Estimating themissing species bias in plant trait measurements. Journal of Vegetation Science, 2015, 26, 828-838.	2.2	49
23	Karyosystematics of the Australasian stipoid grass Austrostipa and related genera: chromosome sizes, ploidy, chromosome base numbers and phylogeny. Australian Systematic Botany, 2015, 28, 145.	0.9	11
24	Maximizing the phylogenetic diversity of seed banks. Conservation Biology, 2015, 29, 370-381.	4.7	14
25	Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.	2.2	323
26	Making the case for plant diversity. Seed Science Research, 2011, 21, 1-4.	1.7	26
27	Global patterns in seed size. Global Ecology and Biogeography, 2007, 16, 109-116.	5.8	334
28	Correlated evolution of genome size and seed mass. New Phytologist, 2007, 173, 422-437.	7.3	189
29	The ecology of seeds.â€ Fenner M, Thompson K. 2005. Cambridge: Cambridge University Press. £26 (softback) £55 (hardback) 260 pp Annals of Botany, 2006, 97, 151-152.	2.9	8
30	Factors that shape seed mass evolution. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10540-10544.	7.1	280
31	A Brief History of Seed Size. Science, 2005, 307, 576-580.	12.6	513
32	Ecological aspects of seed desiccation sensitivity. Journal of Ecology, 2003, 91, 294-304.	4.0	320
33	The soil seed banks of North West Europe: methodology, density and longevityKen Thompson, Jan Bakker, Renée Bekker. 276 pp. Cambridge University PressCambridge, UK. 1997. ISBN 0-521-495-19-9 (hardback) £65. Seed Science Research, 1997, 7, 319-319.	1.7	1
34	SEEDLING SURVIVORSHIP IN NATURAL POPULATIONS OF NINE PERENNIAL CHALK GRASSLAND PLANTS. New Phytologist, 1981, 88, 555-558.	7.3	50
35	Managing Ex SituÂCollections of Wild Species' Seeds: Use ofÂBiodiversity Informatics in the Millennium Seed Bank to Address Challenges. Biodiversity Information Science and Standards, 0, 1, e20197.	0.0	2