Jose Manuel Rodriguez PeÑa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6602945/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic Identification of Essential Genes Required for Yeast Cell Wall Integrity: Involvement of the RSC Remodelling Complex. Journal of Fungi (Basel, Switzerland), 2022, 8, 718.	3.5	2
2	Signalling through the yeast MAPK Cell Wall Integrity pathway controls P-body assembly upon cell wall stress. Scientific Reports, 2019, 9, 3186.	3.3	16
3	The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast. Journal of Fungi (Basel, Switzerland), 2018, 4, 1.	3.5	143
4	A novel connection between the Cell Wall Integrity and the PKA pathways regulates cell wall stress response in yeast. Scientific Reports, 2017, 7, 5703.	3.3	50
5	Rlm1 mediates a positive autoregulatory transcriptional feedback essential for Slt2 MAPK dependent gene expression. Journal of Cell Science, 2016, 129, 1649-60.	2.0	33
6	Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2. Nucleic Acids Research, 2016, 44, gkw324.	14.5	35
7	Genomic profiling of fungal cell wall-interfering compounds: identification of a common gene signature. BMC Genomics, 2015, 16, 683.	2.8	54
8	Structural and functional analysis of yeast Crh1 and Crh2 transglycosylases. FEBS Journal, 2015, 282, 715-731.	4.7	24
9	Activation of the yeast cell wall integrity MAPK pathway by zymolyase depends on protease and glucanase activities and requires the mucin″ike protein Hkr1 but not Msb2. FEBS Letters, 2013, 587, 3675-3680.	2.8	32
10	Genome-wide survey of yeast mutations leading to activation of the yeast cell integrity MAPK pathway: Novel insights into diverse MAPK outcomes. BMC Genomics, 2011, 12, 390.	2.8	44
11	<i>GAS3</i> , a developmentally regulated gene, encodes a highly mannosylated and inactive protein of the Gas family of <i>Saccharomyces cerevisiae</i> . Yeast, 2010, 27, 597-610.	1.7	17
12	The highâ€osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes. Yeast, 2010, 27, 495-502.	1.7	145
13	Characterization of Sensor-Specific Stress Response by Transcriptional Profiling of <i>wsc1</i> and <i>mid2</i> Deletion Strains and Chimeric Sensors in <i>Saccharomyces cerevisiae</i> . OMICS A Journal of Integrative Biology, 2010, 14, 679-688.	2.0	33
14	The High Osmotic Response and Cell Wall Integrity Pathways Cooperate to Regulate Transcriptional Responses to Zymolyase-induced Cell Wall Stress in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2009, 284, 10901-10911.	3.4	138
15	A yeast strain biosensor to detect cell wall-perturbing agents. Journal of Biotechnology, 2008, 133, 311-317.	3.8	25
16	The Sequential Activation of the Yeast HOG and SLT2 Pathways Is Required for Cell Survival to Cell Wall Stress. Molecular Biology of the Cell, 2008, 19, 1113-1124.	2.1	183
17	GAS2 and GAS4, a Pair of Developmentally Regulated Genes Required for Spore Wall Assembly in Saccharomyces cerevisiae. Eukaryotic Cell, 2007, 6, 302-316.	3.4	48
18	The GPI-anchored Gas and Crh families are fungal antigens. Yeast, 2007, 24, 289-296.	1.7	30

#	Article	IF	CITATIONS
19	Crh1p and Crh2p are required for the cross-linking of chitin to ?(1-6)glucan in the Saccharomyces cerevisiae cell wall. Molecular Microbiology, 2007, 63, 921-35.	2.5	128
20	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
21	The â€~yeast cell wall chip' – a tool to analyse the regulation of cell wall biogenesis in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2005, 151, 2241-2249.	1.8	27
22	CRR1, a gene encoding a putative transglycosidase, is required for proper spore wall assembly in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2004, 150, 3269-3280.	1.8	35
23	The Global Transcriptional Response to Transient Cell Wall Damage in Saccharomyces cerevisiae and Its Regulation by the Cell Integrity Signaling Pathway. Journal of Biological Chemistry, 2004, 279, 15183-15195.	3.4	295
24	Mechanisms for targeting of the Saccharomyces cerevisiae GPI-anchored cell wall protein Crh2p to polarised growth sites. Journal of Cell Science, 2002, 115, 2549-58.	2.0	37
25	A Genomic Approach for the Identification and Classification of Genes Involved in Cell Wall Formation and Its Regulation inSaccharomyces cerevisiae. Comparative and Functional Genomics, 2001, 2, 124-142.	2.0	138
26	A Novel Family of Cell Wall-Related Proteins Regulated Differently during the Yeast Life Cycle. Molecular and Cellular Biology, 2000, 20, 3245-3255.	2.3	122
27	The deletion of six ORFs of unknown function fromSaccharomyces cerevisiae chromosome VII reveals two essential genes:YGR195w andYGR198w. , 1998, 14, 853-860.		10
28	Homologous regions of the Salmonella enteritidis virulence plasmid and the chromosome of Salmonella typhi encode thiol: disulphide oxidoreductases belonging to the DsbA thioredoxin family. Microbiology (United Kingdom), 1997, 143, 1405-1413.	1.8	24
29	Genetic map of the virulence plasmid of Salmonella enteritidis and nucleotide sequence of its replicons. Gene, 1997, 188, 53-61.	2.2	25
30	A ColE1-type plasmid from Salmonella enteritidis encodes a DNA cytosine methyltransferase. Gene, 1997, 196, 145-158.	2.2	22
31	Restriction map of the Salmonella enteritidis virulence plasmid and its homology with the plasmid of Salmonella typhimurium. Microbial Pathogenesis, 1994, 16, 165-169.	2.9	11