
Sofia Gripenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6600944/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preâ€dispersal seed predation could help explain premature fruit drop in a tropical forest. Journal of Ecology, 2022, 110, 751-761.	4.0	5
2	Host specificity and interaction networks of insects feeding on seeds and fruits in tropical rainforests. Oikos, 2021, 130, 1462-1476.	2.7	10
3	Seed tannin composition of tropical plants. Phytochemistry, 2021, 187, 112750.	2.9	5
4	Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agriculture, Ecosystems and Environment, 2020, 295, 106899.	5.3	114
5	Changes in oak (Quercus robur) photosynthesis after winter moth (Operophtera brumata) herbivory are not explained by changes in chemical or structural leaf traits. PLoS ONE, 2020, 15, e0228157.	2.5	8
6	Assessing the potential for indirect interactions between tropical tree species via shared insect seed predators. Biotropica, 2020, 52, 509-520.	1.6	1
7	Host Records for Tortricidae (Lepidoptera) Reared from Seeds and Fruits in Panama. Proceedings of the Entomological Society of Washington, 2020, 122, 12.	0.2	1
8	A highly resolved food web for insect seed predators in a speciesâ€rich tropical forest. Ecology Letters, 2019, 22, 1638-1649.	6.4	32
9	The insectâ€focused classification of fruit syndromes in tropical rain forests: An interâ€continental comparison. Biotropica, 2019, 51, 39-49.	1.6	2
10	Insect community structure covaries with host plant chemistry but is not affected by prior herbivory. Ecology, 2019, 100, e02739.	3.2	14
11	Insect assemblages attacking seeds and fruits in a rainforest in Thailand. Entomological Science, 2019, 22, 137-150.	0.6	4
12	An entomocentric view of the Janzen–Connell hypothesis. Insect Conservation and Diversity, 2019, 12, 1-8.	3.0	9
13	A crossâ€continental comparison of assemblages of seed―and fruitâ€feeding insects in tropical rain forests: Faunal composition and rates of attack. Journal of Biogeography, 2018, 45, 1395-1407.	3.0	12
14	Related herbivore species show similar temporal dynamics. Journal of Animal Ecology, 2018, 87, 801-812.	2.8	8
15	Seed polyphenols in a diverse tropical plant community. Journal of Ecology, 2018, 106, 87-100.	4.0	22
16	Insect herbivory on seedlings of rainforest trees: Effects of density and distance of conspecific and heterospecific neighbors. Ecology and Evolution, 2018, 8, 12702-12711.	1.9	13
17	Seed predation by insects across a tropical forest precipitation gradient. Ecological Entomology, 2018, 43, 813-822.	2.2	9
18	Do preâ€dispersal insect seed predators contribute to maintaining tropical forest plant diversity?. Biotropica, 2018, 50, 839-845.	1.6	12

SOFIA GRIPENBERG

#	Article	IF	CITATIONS
19	Dormancyâ€defense syndromes and tradeoffs between physical and chemical defenses in seeds of pioneer species. Ecology, 2018, 99, 1988-1998.	3.2	27
20	Smallâ€scale indirect plant responses to insect herbivory could have major impacts on canopy photosynthesis and isoprene emission. New Phytologist, 2018, 220, 799-810.	7.3	25
21	Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic and Applied Ecology, 2015, 16, 573-582.	2.7	121
22	Nonâ€native plant species benefit from disturbance: a metaâ€analysis. Oikos, 2015, 124, 122-129.	2.7	160
23	Testing for enemyâ€mediated densityâ€dependence in the mortality of seedlings: field experiments with five Neotropical tree species. Oikos, 2014, 123, 185-193.	2.7	33
24	Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 2014, 506, 85-88.	27.8	548
25	Antagonistic interaction networks are structured independently of latitude and host guild. Ecology Letters, 2014, 17, 340-349.	6.4	128
26	Crossâ€kingdom interactions matter: fungalâ€mediated interactions structure an insect community on oak. Ecology Letters, 2012, 15, 177-185.	6.4	66
27	Can we predict indirect interactions from quantitative food webs? - an experimental approach. Journal of Animal Ecology, 2011, 80, 108-118.	2.8	55
28	A novel parasitoid and a declining butterfly: cause or coincidence?. Ecological Entomology, 2011, 36, 271-281.	2.2	15
29	A metaâ€analysis of preference–performance relationships in phytophagous insects. Ecology Letters, 2010, 13, 383-393.	6.4	680
30	Testing the Janzenâ€Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree. Ecology Letters, 2010, 13, 1262-1269.	6.4	187
31	Spatial population structure of a specialist leafâ€mining moth. Journal of Animal Ecology, 2008, 77, 757-767.	2.8	25
32	Insect seed predators and environmental change. Journal of Applied Ecology, 2008, 45, 1593-1599.	4.0	56
33	Neither the devil nor the deep blue sea: larval mortality factors fail to explain the abundance and distribution of <i>Tischeria ekebladella</i> . Ecological Entomology, 2008, 33, 346-356.	2.2	12
34	A tree in the eyes of a moth ? temporal variation in oak leaf quality and leaf-miner performance. Oikos, 2007, 116, 592-600.	2.7	7
35	Up or down in space? Uniting the bottomâ€up versus topâ€down paradigm and spatial ecology. Oikos, 2007, 116, 181-188.	2.7	126
36	A tree in the eyes of a moth – temporal variation in oak leaf quality and leafâ€miner performance. Oikos, 2007, 116, 592-600.	2.7	29

SOFIA GRIPENBERG

#	Article	IF	CITATIONS
37	Spatial population structure in an obligate plant pathogen colonizing oak <i>Quercus robur</i> . Functional Ecology, 2007, 21, 1168-1177.	3.6	41
38	Resource selection by female moths in a heterogeneous environment: what is a poor girl to do?. Journal of Animal Ecology, 2007, 76, 854-865.	2.8	55
39	Up or down in space? Uniting the bottom-up versus top-down paradigm and spatial ecology. Oikos, 2007, 116, 181-188.	2.7	3
40	Seeing the trees for the leaves - oaks as mosaics for a host-specific moth. Oikos, 2006, 113, 106-120.	2.7	60
41	The role of herbivorous insects and pathogens in the regeneration dynamics of Guazuma ulmifolia in Panama. Nature Conservation, 0, 32, 81-101.	0.0	6