
Shashikant Srivastava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6600344/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multidrug-Resistant Tuberculosis Not Due to Noncompliance but to Between-Patient Pharmacokinetic Variability. Journal of Infectious Diseases, 2011, 204, 1951-1959.	4.0	246
2	Meta-Analysis of Clinical Studies Supports the Pharmacokinetic Variability Hypothesis for Acquired Drug Resistance and Failure of Antituberculosis Therapy. Clinical Infectious Diseases, 2012, 55, 169-177.	5.8	199
3	The Antibiotic Resistance Arrow of Time: Efflux Pump Induction Is a General First Step in the Evolution of Mycobacterial Drug Resistance. Antimicrobial Agents and Chemotherapy, 2012, 56, 4806-4815.	3.2	158
4	Drug-Penetration Gradients Associated with Acquired Drug Resistance in Patients with Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1208-1219.	5.6	130
5	Effluxâ€Pump–Derived Multiple Drug Resistance to Ethambutol Monotherapy in <i>Mycobacterium tuberculosis</i> and the Pharmacokinetics and Pharmacodynamics of Ethambutol. Journal of Infectious Diseases, 2010, 201, 1225-1231.	4.0	119
6	Drug Concentration Thresholds Predictive of Therapy Failure and Death in Children With Tuberculosis: Bread Crumb Trails in Random Forests. Clinical Infectious Diseases, 2016, 63, S63-S74.	5.8	102
7	Systematic Review and Meta-analyses of the Effect of Chemotherapy on Pulmonary Mycobacterium abscessus Outcomes and Disease Recurrence. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	99
8	Dynamic imaging in patients with tuberculosis reveals heterogeneous drug exposures in pulmonary lesions. Nature Medicine, 2020, 26, 529-534.	30.7	87
9	Linezolid Dose That Maximizes Sterilizing Effect While Minimizing Toxicity and Resistance Emergence for Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	81
10	Levofloxacin Pharmacokinetics/Pharmacodynamics, Dosing, Susceptibility Breakpoints, and Artificial Intelligence in the Treatment of Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S293-S302.	5.8	74
11	Ethambutol Optimal Clinical Dose and Susceptibility Breakpoint Identification by Use of a Novel Pharmacokinetic-Pharmacodynamic Model of Disseminated Intracellular <i>Mycobacterium avium</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 1728-1733.	3.2	57
12	Ceftazidime-avibactam has potent sterilizing activity against highly drug-resistant tuberculosis. Science Advances, 2017, 3, e1701102.	10.3	56
13	Tigecycline Is Highly Efficacious against Mycobacterium abscessus Pulmonary Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 2895-2900.	3.2	54
14	Linezolid-based Regimens for Multidrug-resistant Tuberculosis (TB): A Systematic Review to Establish or Revise the Current Recommended Dose for TB Treatment. Clinical Infectious Diseases, 2018, 67, S327-S335.	5.8	53
15	Meta-analyses and the evidence base for microbial outcomes in the treatment of pulmonary Mycobacterium avium–intracellulare complex disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i3-i19.	3.0	51
16	Moxifloxacin Pharmacokinetics/Pharmacodynamics and Optimal Dose and Susceptibility Breakpoint Identification for Treatment of Disseminated <i>Mycobacterium avium</i> Infection. Antimicrobial Agents and Chemotherapy, 2010, 54, 2534-2539.	3.2	46
17	Therapeutic drug management: is it the future of multidrug-resistant tuberculosis treatment?. European Respiratory Journal, 2013, 42, 1449-1453.	6.7	46
18	Pharmacokinetic Mismatch Does Not Lead to Emergence of Isoniazid- or Rifampin-Resistant Mycobacterium tuberculosis but to Better Antimicrobial Effect: a New Paradigm for Antituberculosis Drug Scheduling. Antimicrobial Agents and Chemotherapy, 2011, 55, 5085-5089.	3.2	44

#	Article	IF	CITATIONS
19	Thioridazine Pharmacokinetic-Pharmacodynamic Parameters "Wobble―during Treatment of Tuberculosis: a Theoretical Basis for Shorter-Duration Curative Monotherapy with Congeners. Antimicrobial Agents and Chemotherapy, 2013, 57, 5870-5877.	3.2	42
20	Failure of the Amikacin, Cefoxitin, and Clarithromycin Combination Regimen for Treating Pulmonary Mycobacterium abscessus Infection. Antimicrobial Agents and Chemotherapy, 2016, 60, 6374-6376.	3.2	41
21	Amikacin Pharmacokinetics/Pharmacodynamics in a Novel Hollow-Fiber Mycobacterium abscessus Disease Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 1242-1248.	3.2	41
22	A Faropenem, Linezolid, and Moxifloxacin Regimen for Both Drug-Susceptible and Multidrug-Resistant Tuberculosis in Children: FLAME Path on the Milky Way. Clinical Infectious Diseases, 2016, 63, S95-S101.	5.8	40
23	A Long-term Co-perfused Disseminated Tuberculosis-3D Liver Hollow Fiber Model for Both Drug Efficacy and Hepatotoxicity in Babies. EBioMedicine, 2016, 6, 126-138.	6.1	40
24	Linezolid for Infants and Toddlers With Disseminated Tuberculosis: First Steps. Clinical Infectious Diseases, 2016, 63, S80-S87.	5.8	39
25	Nucleotide Polymorphism Associated with Ethambutol Resistance in Clinical Isolates of Mycobacterium tuberculosis. Current Microbiology, 2006, 53, 401-405.	2.2	38
26	Artificial Intelligence and Amikacin Exposures Predictive of Outcomes in Multidrug-Resistant Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2016, 60, 5928-5932.	3.2	37
27	Concentration-Dependent Synergy and Antagonism of Linezolid and Moxifloxacin in the Treatment of Childhood Tuberculosis: The Dynamic Duo. Clinical Infectious Diseases, 2016, 63, S88-S94.	5.8	37
28	In Vitro and In Vivo Modeling of Tuberculosis Drugs and its Impact on Optimization of Doses and Regimens. Current Pharmaceutical Design, 2011, 17, 2881-2888.	1.9	36
29	Repurposing drugs for treatment of Mycobacterium abscessus: a view to a kill. Journal of Antimicrobial Chemotherapy, 2020, 75, 1212-1217.	3.0	36
30	Antibiotic Susceptibility of Helicobacter pylori Clinical Isolates: Comparative Evaluation of Disk-Diffusion and E-Test Methods. Current Microbiology, 2006, 53, 329-334.	2.2	34
31	Optimal Clinical Doses of Faropenem, Linezolid, and Moxifloxacin in Children With Disseminated Tuberculosis: Goldilocks. Clinical Infectious Diseases, 2016, 63, S102-S109.	5.8	34
32	Tedizolid is highly bactericidal in the treatment of pulmonary Mycobacterium avium complex disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i30-i35.	3.0	34
33	Amikacin Optimal Exposure Targets in the Hollow-Fiber System Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 5922-5927.	3.2	31
34	The discovery of ceftazidime/avibactam as an anti-Mycobacterium avium agent. Journal of Antimicrobial Chemotherapy, 2017, 72, i36-i42.	3.0	29
35	Ethionamide Pharmacokinetics/Pharmacodynamics-derived Dose, the Role of MICs in Clinical Outcome, and the Resistance Arrow of Time in Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S317-S326.	5.8	29
36	Antibacterial and Sterilizing Effect of Benzylpenicillin in Tuberculosis. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	29

#	Article	IF	CITATIONS
37	A Human Lung Challenge Model to Evaluate the Safety and Immunogenicity of PPD and Live Bacillus Calmette-GuA©rin. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1277-1291.	5.6	28
38	Thioridazine as Chemotherapy for Mycobacterium avium Complex Diseases. Antimicrobial Agents and Chemotherapy, 2016, 60, 4652-4658.	3.2	27
39	Spatial Network Mapping of Pulmonary Multidrug-Resistant Tuberculosis Cavities Using RNA Sequencing. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 370-380.	5.6	27
40	emb nucleotide polymorphisms and the role of embB306 mutations in Mycobacterium tuberculosis resistance to ethambutol. International Journal of Medical Microbiology, 2009, 299, 269-280.	3.6	26
41	Transformation Morphisms and Time-to-Extinction Analysis That Map Therapy Duration From Preclinical Models to Patients With Tuberculosis: Translating From Apples to Oranges. Clinical Infectious Diseases, 2018, 67, S349-S358.	5.8	26
42	The Sterilizing Effect of Intermittent Tedizolid for Pulmonary Tuberculosis. Clinical Infectious Diseases, 2018, 67, S336-S341.	5.8	26
43	Moxifloxacin's Limited Efficacy in the Hollow-Fiber Model of Mycobacterium abscessus Disease. Antimicrobial Agents and Chemotherapy, 2016, 60, 3779-3785.	3.2	25
44	Linezolid as treatment for pulmonary Mycobacterium avium disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i24-i29.	3.0	25
45	A novel ceftazidime/avibactam, rifabutin, tedizolid and moxifloxacin (CARTM) regimen for pulmonary Mycobacterium avium disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i48-i53.	3.0	25
46	Susceptibility Testing of Antibiotics That Degrade Faster than the Doubling Time of Slow-Growing Mycobacteria: Ertapenem Sterilizing Effect versus Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 3193-3195.	3.2	23
47	Sterilizing Effect of Ertapenem-Clavulanate in a Hollow-Fiber Model of Tuberculosis and Implications on Clinical Dosing. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	23
48	Gatifloxacin Pharmacokinetics/Pharmacodynamics–based Optimal Dosing for Pulmonary and Meningeal Multidrug-resistant Tuberculosis. Clinical Infectious Diseases, 2018, 67, S274-S283.	5.8	23
49	Therapeutic Drug Monitoring in Non-Tuberculosis Mycobacteria Infections. Clinical Pharmacokinetics, 2021, 60, 711-725.	3.5	23
50	Rapid Drug Tolerance and Dramatic Sterilizing Effect of Moxifloxacin Monotherapy in a Novel Hollow-Fiber Model of Intracellular Mycobacterium kansasii Disease. Antimicrobial Agents and Chemotherapy, 2015, 59, 2273-2279.	3.2	21
51	New Susceptibility Breakpoints and the Regional Variability of MIC Distribution in Mycobacterium tuberculosis Isolates. Antimicrobial Agents and Chemotherapy, 2012, 56, 5428-5428.	3.2	19
52	Isoniazid clearance is impaired among human immunodeficiency virus/tuberculosis patients with high levels of immune activation. British Journal of Clinical Pharmacology, 2017, 83, 801-811.	2.4	19
53	Multiparameter Responses to Tedizolid Monotherapy and Moxifloxacin Combination Therapy Models of Children With Intracellular Tuberculosis. Clinical Infectious Diseases, 2018, 67, S342-S348.	5.8	18
54	Minocycline Immunomodulates via Sonic Hedgehog Signaling and Apoptosis and Has Direct Potency Against Drug-Resistant Tuberculosis. Journal of Infectious Diseases, 2019, 219, 975-985.	4.0	18

#	Article	IF	CITATIONS
55	Efficacy Versus Hepatotoxicity of High-dose Rifampin, Pyrazinamide, and Moxifloxacin to Shorten Tuberculosis Therapy Duration: There Is Still Fight in the Old Warriors Yet!. Clinical Infectious Diseases, 2018, 67, S359-S364.	5.8	17
56	Urine colorimetry for therapeutic drug monitoring of pyrazinamide during tuberculosis treatment. International Journal of Infectious Diseases, 2018, 68, 18-23.	3.3	15
57	Clofazimine for the Treatment of Mycobacterium kansasii. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	15
58	A â€~shock and awe' thioridazine and moxifloxacin combination-based regimen for pulmonary Mycobacterium avium–intracellulare complex disease. Journal of Antimicrobial Chemotherapy, 2017, 72, i43-i47.	3.0	14
59	Duration of pretomanid/moxifloxacin/pyrazinamide therapy compared with standard therapy based on time-to-extinction mathematics. Journal of Antimicrobial Chemotherapy, 2020, 75, 392-399.	3.0	14
60	A Combination Regimen Design Program Based on Pharmacodynamic Target Setting for Childhood Tuberculosis: Design Rules for the Playground. Clinical Infectious Diseases, 2016, 63, S75-S79.	5.8	13
61	Once-a-week tigecycline for the treatment of drug-resistant TB. Journal of Antimicrobial Chemotherapy, 2019, 74, 1607-1617.	3.0	13
62	Cumulative Fraction of Response for Once- and Twice-Daily Delamanid in Patients with Pulmonary Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	13
63	Mycobacterial Shuttle Vectors Designed for High-Level Protein Expression in Infected Macrophages. Applied and Environmental Microbiology, 2012, 78, 6829-6837.	3.1	12
64	Cefdinir and β-Lactamase Inhibitor Independent Efficacy Against Mycobacterium tuberculosis. Frontiers in Pharmacology, 2021, 12, 677005.	3.5	12
65	Pyrazinamide clearance is impaired among HIV/tuberculosis patients with high levels of systemic immune activation. PLoS ONE, 2017, 12, e0187624.	2.5	12
66	A programme to create short-course chemotherapy for pulmonary Mycobacterium avium disease based on pharmacokinetics/pharmacodynamics and mathematical forecasting. Journal of Antimicrobial Chemotherapy, 2017, 72, i54-i60.	3.0	11
67	Failure of the azithromycin and ethambutol combination regimen in the hollow-fibre system model of pulmonary Mycobacterium avium infection is due to acquired resistance. Journal of Antimicrobial Chemotherapy, 2017, 72, i20-i23.	3.0	11
68	Evaluation of Ceftriaxone Plus Avibactam in an Intracellular Hollow Fiber Model of Tuberculosis: Implications for the Treatment of Disseminated and Meningeal Tuberculosis in Children. Pediatric Infectious Disease Journal, 2020, 39, 1092-1100.	2.0	10
69	Effect of specimen processing, growth supplement, and different metabolic population on Mycobacterium tuberculosis laboratory diagnosis. PLoS ONE, 2020, 15, e0230927.	2.5	10
70	Comparison of Rifamycins for Efficacy Against Mycobacterium avium Complex and Resistance Emergence in the Hollow Fiber Model System. Frontiers in Pharmacology, 2021, 12, 645264.	3.5	9
71	Comparison of a Novel Regimen of Rifapentine, Tedizolid, and Minocycline with Standard Regimens for Treatment of Pulmonary Mycobacterium kansasii. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	8
72	Tedizolid, Faropenem, and Moxifloxacin Combination With Potential Activity Against Nonreplicating Mycobacterium tuberculosis. Frontiers in Pharmacology, 2020, 11, 616294.	3.5	8

#	Article	IF	CITATIONS
73	Integrating drug concentrations and minimum inhibitory concentrations with Bayesian-dose optimisation for multidrug-resistant tuberculosis. European Respiratory Journal, 2014, 43, 312-313.	6.7	7
74	Acquired Drug Resistance Because of Pharmacokinetic Variability in a Young Child With Tuberculosis. Pediatric Infectious Disease Journal, 2014, 33, 1205.	2.0	7
75	Mycobacterium tuberculosis sterilizing activity of faropenem, pyrazinamide and linezolid combination and failure to shorten the therapy duration. International Journal of Infectious Diseases, 2021, 104, 680-684.	3.3	7
76	Potency of vancomycin against Mycobacterium tuberculosis in the hollow fiber system model. Journal of Global Antimicrobial Resistance, 2021, 24, 403-410.	2.2	7
77	Markers of gut dysfunction do not explain low rifampicin bioavailability in HIV-associated TB. Journal of Antimicrobial Chemotherapy, 2017, 72, 2020-2027.	3.0	6
78	Optimizing ethambutol dosing among HIV/tuberculosis co-infected patients: a population pharmacokinetic modelling and simulation study. Journal of Antimicrobial Chemotherapy, 2019, 74, 2994-3002.	3.0	6
79	Novel Short-Course Therapy and Morphism Mapping for Clinical Pulmonary Mycobacterium kansasii. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	6
80	Comment on: Clinical significance of 2 h plasma concentrations of first-line anti-tuberculosis drugs: a prospective observational study. Journal of Antimicrobial Chemotherapy, 2015, 70, 320-321.	3.0	5
81	pH Conditions under Which Pyrazinamide Works in Humans. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	5
82	Repurposing Cefazolin-Avibactam for the Treatment of Drug Resistant Mycobacterium tuberculosis. Frontiers in Pharmacology, 2021, 12, 776969.	3.5	5
83	Scientific and patient care evidence to change susceptibility breakpoints for first-line anti-tuberculosis drugs [Correspondence]. International Journal of Tuberculosis and Lung Disease, 2012, 16, 706-707.	1.2	4
84	<i>In vitro</i> susceptibility testing and totally drug-resistant tuberculosis. European Respiratory Journal, 2013, 42, 291-292.	6.7	3
85	sncRNA-1 Is a Small Noncoding RNA Produced by Mycobacterium tuberculosis in Infected Cells That Positively Regulates Genes Coupled to Oleic Acid Biosynthesis. Frontiers in Microbiology, 2020, 11, 1631.	3.5	3
86	Rifampin Pharmacokinetics/Pharmacodynamics in the Hollow-Fiber Model of Mycobacterium kansasii Infection. Antimicrobial Agents and Chemotherapy, 2022, 66, e0232021.	3.2	3
87	Fatal Lure of Look-Back Studies in Explaining Pharmacological Events Such as Acquired Drug Resistance in Patients With Multidrug-Resistant Tuberculosis. Journal of Infectious Diseases, 2015, 212, 166-167.	4.0	2
88	Optimal Dose or Optimal Exposure? Consideration for Linezolid in Tuberculosis Treatment. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	2
89	Prevalence of H. influenzae type b & f among unvaccinated patients with respiratory tract infection and meningitis. World Journal of Microbiology and Biotechnology, 2008, 24, 1977-1979.	3.6	1
90	Development of an animal model of Helicobacter pylori (Indian strain) infection. Indian Journal of Gastroenterology, 2019, 38, 167-172.	1.4	1

#	Article	IF	CITATIONS
91	Redox Imbalance and Oxidative DNA Damage During Isoniazid Treatment of HIV-Associated Tuberculosis: A Clinical and Translational Pharmacokinetic Study. Frontiers in Pharmacology, 2020, 11, 1103.	3.5	1
92	An overview of drugs for the treatment of Mycobacterium kansasii pulmonary disease. Journal of Global Antimicrobial Resistance, 2022, 28, 71-77.	2.2	1
93	Reply to "Pharmacokinetic Mismatch of Tuberculosis Drugs― Antimicrobial Agents and Chemotherapy, 2012, 56, 1667-1667.	3.2	0
94	Reply to Zimenkov, "Mutation in luxR Family Transcriptional Regulator Rv0890c Is Not a Marker of Linezolid Resistance― Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	0
95	Therapeutic drug monitoring and fluoroquinolones for multidrug-resistant tuberculosis. European Respiratory Journal, 2021, 57, 2004454.	6.7	0
96	Minimum inhibitory concentration, pharmacokinetics/pharmacodynamics and therapeutic drug monitoring: An integrated approach for multidrug-resistant tuberculosis. Lung India, 2015, 32, 402-3.	0.7	0