Giorgio Corti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/659969/publications.pdf

Version: 2024-02-01

186265 315739 4,297 37 28 38 h-index citations g-index papers 39 39 39 7738 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nature Medicine, 2015, 21, 795-801.	30.7	809
2	Amplification of the <i>MET</i> Receptor Drives Resistance to Anti-EGFR Therapies in Colorectal Cancer. Cancer Discovery, 2013, 3, 658-673.	9.4	585
3	Tumor Heterogeneity and Lesion-Specific Response to Targeted Therapy in Colorectal Cancer. Cancer Discovery, 2016, 6, 147-153.	9.4	338
4	Acquired Resistance to the TRK Inhibitor Entrectinib in Colorectal Cancer. Cancer Discovery, 2016, 6, 36-44.	9.4	258
5	The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nature Communications, 2015, 6, 7002.	12.8	251
6	Emergence of Multiple <i>EGFR</i> Extracellular Mutations during Cetuximab Treatment in Colorectal Cancer. Clinical Cancer Research, 2015, 21, 2157-2166.	7.0	227
7	Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer. Nature Communications, 2016, 7, 13665.	12.8	170
8	High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood, 2010, 116, 5507-5517.	1.4	150
9	Radiologic and Genomic Evolution of Individual Metastases during HER2 Blockade in Colorectal Cancer. Cancer Cell, 2018, 34, 148-162.e7.	16.8	129
10	Small Noncoding RNAs in Cells Transformed by Human T-Cell Leukemia Virus Type 1: a Role for a tRNA Fragment as a Primer for Reverse Transcriptase. Journal of Virology, 2014, 88, 3612-3622.	3.4	116
11	Complete Mitochondrial Genome Sequence of the Tyrolean Iceman. Current Biology, 2008, 18, 1687-1693.	3.9	101
12	Molecular Landscape of Acquired Resistance to Targeted Therapy Combinations in <i>BRAF</i> Colorectal Cancer. Cancer Research, 2016, 76, 4504-4515.	0.9	91
13	A Glycosylated, Labionin-Containing Lanthipeptide with Marked Antinociceptive Activity. ACS Chemical Biology, 2014, 9, 398-404.	3.4	89
14	A Subset of Colorectal Cancers with Cross-Sensitivity to Olaparib and Oxaliplatin. Clinical Cancer Research, 2020, 26, 1372-1384.	7.0	66
15	Specific inactivation of two immunomodulatory <i>SIGLEC</i> Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9935-9940.	7.1	64
16	BCAM and LAMA5 Mediate the Recognition between Tumor Cells and the Endothelium in the Metastatic Spreading of KRAS-Mutant Colorectal Cancer. Clinical Cancer Research, 2016, 22, 4923-4933.	7.0	50
17	Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production. Microbial Cell Factories, 2009, 8, 18.	4.0	45
18	Patient-Derived Xenografts and Matched Cell Lines Identify Pharmacogenomic Vulnerabilities in Colorectal Cancer. Clinical Cancer Research, 2019, 25, 6243-6259.	7.0	42

#	Article	IF	CITATIONS
19	Evolving neoantigen profiles in colorectal cancers with DNA repair defects. Genome Medicine, 2019, 11, 42.	8.2	42
20	Origins and Evolution of the Etruscans' mtDNA. PLoS ONE, 2013, 8, e55519.	2.5	40
21	The Complete Mitochondrial Genome of an 11,450-year-old Aurochsen (Bos primigenius) from Central Italy. BMC Evolutionary Biology, 2011, 11, 32.	3.2	39
22	Complete genome sequence of a serotype 11A, ST62 Streptococcus pneumoniaeinvasive isolate. BMC Microbiology, 2011, 11, 25.	3.3	36
23	Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain. Microbial Cell Factories, 2012, 11, 32.	4.0	36
24	Tracking aCAD-ALK gene rearrangement in urine and blood of a colorectal cancer patient treated with an ALK inhibitor. Annals of Oncology, 2017, 28, 1302-1308.	1.2	32
25	The Microcephalin Ancestral Allele in a Neanderthal Individual. PLoS ONE, 2010, 5, e10648.	2.5	31
26	Emergence of MET hyper-amplification at progression to MET and BRAF inhibition in colorectal cancer. British Journal of Cancer, 2017, 117, 347-352.	6.4	31
27	The genome sequence of the hydrocarbon-degrading Acinetobacter venetianus VE-C3. Research in Microbiology, 2013, 164, 439-449.	2.1	30
28	Comparative genomics revealed key molecular targets to rapidly convert a reference rifamycin-producing bacterial strain into an overproducer by genetic engineering. Metabolic Engineering, 2014, 26, 1-16.	7.0	29
29	A Genomic Analysis Workflow for Colorectal Cancer Precision Oncology. Clinical Colorectal Cancer, 2019, 18, 91-101.e3.	2.3	29
30	Complete gene expression profiling of Saccharopolyspora erythraea using GeneChip DNA microarrays. Microbial Cell Factories, 2007, 6, 37.	4.0	25
31	An Ariadne's thread to the identification and annotation of noncoding RNAs in eukaryotes. Briefings in Bioinformatics, 2009, 10, 475-489.	6.5	25
32	Phylogenetic Position of a Copper Age Sheep (Ovis aries) Mitochondrial DNA. PLoS ONE, 2012, 7, e33792.	2.5	20
33	Reliance upon ancestral mutations is maintained in colorectal cancers that heterogeneously evolve during targeted therapies. Nature Communications, 2018, 9, 2287.	12.8	18
34	Characterization of Nucleotide Misincorporation Patterns in the Iceman's Mitochondrial DNA. PLoS ONE, 2010, 5, e8629.	2.5	18
35	A Genomic, Transcriptomic and Proteomic Look at the GE2270 Producer Planobispora rosea, an Uncommon Actinomycete. PLoS ONE, 2015, 10, e0133705.	2.5	14
36	Tracking colorectal cancer evolution in time and space. Annals of Oncology, 2017, 28, 1163-1165.	1.2	5

#	Article	IF	CITATIONS
37	Enly: Improving Draft Genomes through Reads Recycling. Journal of Genomics, 2014, 2, 89-93.	0.9	3