List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6599644/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding and Treating latrogenic Nerve Injuries in Shoulder Surgery. Journal of the American Academy of Orthopaedic Surgeons, The, 2020, 28, e185-e192.	2.5	6
2	Examination of the human motor endplate after brachial plexus injury with twoâ€photon microscopy. Muscle and Nerve, 2020, 61, 390-395.	2.2	6
3	Establishing validity of the fundamentals of spinal surgery (FOSS) simulator as a teaching tool for orthopedic and neurosurgical trainees. Spine Journal, 2020, 20, 580-589.	1.3	7
4	Authors' Response to Letter to the Editor. Spine Journal, 2020, 20, 1524.	1.3	0
5	A Call to Arms: Emergency Hand and Upper-Extremity Operations During the COVID-19 Pandemic. Journal of Hand Surgery Global Online, 2020, 2, 175-181.	0.8	13
6	Human motor endplate remodeling after traumatic nerve injury. Journal of Neurosurgery, 2020, 135, 220-227.	1.6	19
7	Pharmacological Attenuation of Electrical Effects in a Model of Compression Neuropathy. Journal of Bone and Joint Surgery - Series A, 2019, 101, 523-530.	3.0	4
8	Lessons From Leprosy: Peripheral Neuropathies and Deformities in Chronic Demyelinating Diseases. Journal of Hand Surgery, 2019, 44, 411-415.	1.6	5
9	Biologic Augmentation in Peripheral Nerve Repair. , 2019, , 141-163.		1
10	Proximal Interphalangeal Joint Fusion. Hand Clinics, 2018, 34, 177-184.	1.0	11
11	Surgical repair in humans after traumatic nerve injury provides limited functional neural regeneration in adults. Experimental Neurology, 2017, 290, 106-114.	4.1	67
12	Attenuation of Robust Glial Scar Formation Facilitates Functional Recovery in Animal Models of Chronic Nerve Compression Injury. Journal of Bone and Joint Surgery - Series A, 2017, 99, e132.	3.0	10
13	Erythropoietin is Neuroprotective During Ongoing Compression and Speeds Recovery Following Surgical Decompression in a Murine Model of Chronic Compression Neuropathy. Journal of Hand Surgery, 2016, 41, S48-S49.	1.6	0
14	Construct Validity for a Cost-effective Arthroscopic Surgery Simulator for Resident Education. Journal of the American Academy of Orthopaedic Surgeons, The, 2016, 24, 886-894.	2.5	27
15	The effect of long and short head biceps loading on glenohumeral joint rotational range of motion and humeral head position. Knee Surgery, Sports Traumatology, Arthroscopy, 2016, 24, 1979-1987.	4.2	22
16	Topical Tranexamic Acid Does Not Affect Electrophysiologic or Neurovascular Sciatic Nerve Markers in an Animal Model. Clinical Orthopaedics and Related Research, 2015, 473, 1074-1082.	1.5	8
17	A Cost-Effective Junior Resident Training and Assessment Simulator for Orthopaedic Surgical Skills via Fundamentals of Orthopaedic Surgery. Journal of Bone and Joint Surgery - Series A, 2015, 97, 659-666.	3.0	49
18	Neuroprotective Potential of Erythropoietin as an Adjuvant to Decompression for Chronic Compression Neuropathy. Journal of Hand Surgery, 2015, 40, e36-e37.	1.6	0

#	Article	IF	CITATIONS
19	Desert hedgehog is a mediator of demyelination in compression neuropathies. Experimental Neurology, 2015, 271, 84-94.	4.1	17
20	The 2013 American-British-Canadian Traveling Fellowship: Innovation, Accountability, and Insight. Journal of Bone and Joint Surgery - Series A, 2014, 96, e66.	3.0	0
21	The role of pectoralis major and latissimus dorsi muscles in a biomechanical model of massive rotator cuff tear. Journal of Shoulder and Elbow Surgery, 2014, 23, 1136-1142.	2.6	21
22	Targeting the Wnt/ß-Catenin Signaling Pathway After Traumatic Nerve Injury to Improve Functional Recovery. Journal of Hand Surgery, 2014, 39, e13-e14.	1.6	0
23	Total joint Perioperative Surgical Home: an observational financial review. Perioperative Medicine (London, England), 2014, 3, 6.	1.5	46
24	Early Surgical Decompression Restores Neurovascular Blood Flow and Ischemic Parameters in an in Vivo Animal Model of Nerve Compression Injury. Journal of Bone and Joint Surgery - Series A, 2014, 96, 897-906.	3.0	29
25	Nerve Allografts and Conduits in Peripheral Nerve Repair. Hand Clinics, 2013, 29, 331-348.	1.0	97
26	Matrix metalloproteinase 3 deletion preserves denervated motor endplates after traumatic nerve injury. Annals of Neurology, 2013, 73, 210-223.	5.3	47
27	Transplantation of Schwann cells in a collagen tube for the repair of large, segmental peripheral nerve defects in rats. Journal of Neurosurgery, 2013, 119, 720-732.	1.6	71
28	Biomechanical comparison of single-row, double-row, and transosseous-equivalent repair techniques after healing in an animal rotator cuff tear model. Journal of Orthopaedic Research, 2013, 31, 1254-1260.	2.3	57
29	Mechanisms of fatty degeneration in massive rotator cuff tears. Journal of Shoulder and Elbow Surgery, 2012, 21, 175-180.	2.6	60
30	Biophysical stimulation induces demyelination via an integrinâ€dependent mechanism. Annals of Neurology, 2012, 72, 112-123.	5.3	14
31	Commentary on Kemp et al. (2011): Dose and duration of nerve growth factor (NGF) administration determine the extent of behavioral recovery following peripheral nerve injury in the rat. Experimental Neurology, 2012, 234, 5-7.	4.1	1
32	Chronic nerve compression alters schwann cell myelin architecture in a murine model. Muscle and Nerve, 2012, 45, 231-241.	2.2	50
33	Reoperative Options for Compressive Neuropathies of the Upper Extremity. , 2012, , 227-242.		0
34	Limb Salvage With Major Nerve Injury: Current Management and Future Directions. Journal of the American Academy of Orthopaedic Surgeons, The, 2011, 19, S28-S34.	2.5	40
35	Basic Science of Peripheral Nerve Injury and Repair. , 2011, , 591-600.e3.		1
36	Nerve compression activates selective nociceptive pathways and upregulates peripheral sodium channel expression in Schwann cells. Journal of Orthopaedic Research, 2010, 28, 753-761.	2.3	12

#	Article	IF	CITATIONS
37	Development of Fatty Atrophy After Neurologic and Rotator Cuff Injuries in an Animal Model of Rotator Cuff Pathology. Journal of Bone and Joint Surgery - Series A, 2010, 92, 2270-2278.	3.0	121
38	Compressive Neuropathies of the Upper Extremity: Update on Pathophysiology, Classification, and Electrodiagnostic Findings. Journal of Hand Surgery, 2010, 35, 668-677.	1.6	76
39	Advances in the Management of Spinal Cord Injury. Journal of the American Academy of Orthopaedic Surgeons, The, 2010, 18, 210-222.	2.5	64
40	An In-Vitro Traumatic Model To Evaluate the Response of Myelinated Cultures to Sustained Hydrostatic Compression Injury. Journal of Neurotrauma, 2009, 26, 2245-2256.	3.4	19
41	Understanding the mechanisms of entrapment neuropathies. Neurosurgical Focus, 2009, 26, E7.	2.3	60
42	Neuromuscular junction integrity after chronic nerve compression injury. Journal of Orthopaedic Research, 2009, 27, 114-119.	2.3	14
43	Resection of glial scar following spinal cord injury. Journal of Orthopaedic Research, 2009, 27, 931-936.	2.3	25
44	Functional assessment after sciatic nerve injury in a rat model. Microsurgery, 2009, 29, 644-649.	1.3	85
45	c-Jun, krox-20, and integrin β4 expression following chronic nerve compression injury. Neuroscience Letters, 2009, 465, 194-198.	2.1	15
46	Development of a new model for rotator cuff pathology: the rabbit subscapularis muscle. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 80, 97-103.	3.3	48
47	Chronic nerve compression injury induces a phenotypic switch of neurons within the dorsal root ganglia. Journal of Comparative Neurology, 2008, 506, 180-193.	1.6	60
48	Transplantation of Preconditioned Schwann Cells Following Hemisection Spinal Cord Injury. Spine, 2007, 32, 943-949.	2.0	19
49	Contributions of the different rabbit models to our understanding of rotator cuff pathology. Journal of Shoulder and Elbow Surgery, 2007, 16, S149-S157.	2.6	61
50	The Role of Neurodiagnostic Studies in Nerve Injuries and Other Orthopedic Disorders. Journal of Hand Surgery, 2007, 32, 1280-1290.	1.6	13
51	Macrophage depletion alters the blood–nerve barrier without affecting Schwann cell function after neural injury. Journal of Neuroscience Research, 2007, 85, 766-777.	2.9	41
52	Local down-regulation of myelin-associated glycoprotein permits axonal sprouting with chronic nerve compression injury. Experimental Neurology, 2006, 200, 418-429.	4.1	54
53	Demyelination secondary to chronic nerve compression injury alters Schmidt-Lanterman incisures. Journal of Anatomy, 2006, 209, 111-118.	1.5	16
54	Transplantation of Preconditioned Schwann Cells in Peripheral Nerve Grafts After Contusion in the Adult Spinal Cord. Journal of Bone and Joint Surgery - Series A, 2006, 88, 2400-2410.	3.0	19

#	Article	IF	CITATIONS
55	Spatiotemporal Pattern of Macrophage Recruitment after Chronic Nerve Compression Injury. Journal of Neurotrauma, 2006, 23, 216-226.	3.4	22
56	TRANSPLANTATION OF PRECONDITIONED SCHWANN CELLS IN PERIPHERAL NERVE GRAFTS AFTER CONTUSION IN THE ADULT SPINAL CORD. Journal of Bone and Joint Surgery - Series A, 2006, 88, 2400-2410.	3.0	0
57	Understanding the Biology of Compressive Neuropathies. Clinical Orthopaedics and Related Research, 2005, &NA, 251-260.	1.5	28
58	Subtotal Medial Epicondylectomy as a Surgical Option for Treatment of Cubital Tunnel Syndrome. Techniques in Hand and Upper Extremity Surgery, 2005, 9, 52-59.	0.6	18
59	Shear stress alters the expression of myelin-associated glycoprotein (MAG) and myelin basic protein (MBP) in Schwann cells. Journal of Orthopaedic Research, 2005, 23, 1232-1239.	2.3	63
60	Schwann cells upregulate vascular endothelial growth factor secondary to chronic nerve compression injury. Muscle and Nerve, 2005, 31, 452-460.	2.2	52
61	Chronic nerve compression induces local demyelination and remyelination in a rat model of carpal tunnel syndrome. Experimental Neurology, 2004, 187, 500-508.	4.1	110
62	The anatomy and biochemistry of myelin and myelination. Operative Techniques in Orthopaedics, 2004, 14, 146-152.	0.1	4
63	Current surgical techniques of peripheral nerve repair. Operative Techniques in Orthopaedics, 2004, 14, 163-170.	0.1	14
64	Peripheral nerve repair: a review. Current Opinion in Orthopaedics, 2004, 15, 215-219.	0.3	17
65	Chronic nerve compression induces concurrent apoptosis and proliferation of Schwann cells. Journal of Comparative Neurology, 2003, 461, 174-186.	1.6	155
66	Macrophage Recruitment Follows the Pattern of Inducible Nitric Oxide Synthase Expression in a Model for Carpal Tunnel Syndrome. Journal of Neurotrauma, 2003, 20, 671-680.	3.4	26
67	Optimization of Schwann Cell Adhesion in Response to Shear Stress in an in Vitro Model for Peripheral Nerve Tissue Engineering. Tissue Engineering, 2003, 9, 233-241.	4.6	28
68	A Novel Method of Skeletal Fixation in an Above-Elbow Replantation: The Dowel Pin Technique. Plastic and Reconstructive Surgery, 2003, 111, 2349-2352.	1.4	1
69	Evaluation of an acute nerve compression injury with magnetic resonance neurography. Journal of Hand Surgery, 2001, 26, 1093-1099.	1.6	23
70	The effect of shear stress on fibroblasts derived from Dupuytren's tissue and normal palmar fascia. Journal of Hand Surgery, 1998, 23, 945-950.	1.6	16