
Julien Jv Vignard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/659862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytolethal Distending Toxin Promotes Replicative Stress Leading to Genetic Instability Transmitted to Daughter Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 656795.	3.7	8
2	Chronic exposure to Cytolethal Distending Toxin (CDT) promotes a cGAS-dependent type I interferon response. Cellular and Molecular Life Sciences, 2021, 78, 6319-6335.	5.4	7
3	Functional Study of Haemophilus ducreyi Cytolethal Distending Toxin Subunit B. Toxins, 2020, 12, 530.	3.4	4
4	Versicolorin A, a precursor in aflatoxins biosynthesis, is a food contaminant toxic for human intestinal cells. Environment International, 2020, 137, 105568.	10.0	20
5	Cytolethal Distending Toxin Subunit B: A Review of Structure–Function Relationship. Toxins, 2019, 11, 595.	3.4	40
6	A Fanci knockout mouse model reveals common and distinct functions for FANCI and FANCD2. Nucleic Acids Research, 2019, 47, 7532-7547.	14.5	36
7	Cell transfection of purified cytolethal distending toxin B subunits allows comparing their nuclease activity while plasmid degradation assay does not. PLoS ONE, 2019, 14, e0214313.	2.5	11
8	Exposure to the Fungicide Captan Induces DNA Base Alterations and Replicative Stress in Mammalian Cells. Environmental and Molecular Mutagenesis, 2019, 60, 286-297.	2.2	9
9	<i>Campylobacter jejuni</i> promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut, 2019, 68, 289-300.	12.1	251
10	The Colibactin Genotoxin Generates DNA Interstrand Cross-Links in Infected Cells. MBio, 2018, 9, .	4.1	153
11	Genotoxicity and mutagenicity assessment of food contaminant mixtures present in the French diet. Environmental and Molecular Mutagenesis, 2018, 59, 742-754.	2.2	21
12	Benzo[a]pyrene-induced DNA damage associated with mutagenesis in primary human activated T lymphocytes. Biochemical Pharmacology, 2017, 137, 113-124.	4.4	27
13	In vitro micronucleus test in living cells associating biological tracers and high-content imaging. Toxicology Letters, 2017, 280, S322.	0.8	0
14	Around and beyond 53BP1 Nuclear Bodies. International Journal of Molecular Sciences, 2017, 18, 2611.	4.1	27
15	Genotoxicity of Cytolethal Distending Toxin (CDT) on Isogenic Human Colorectal Cell Lines: Potential Promoting Effects for Colorectal Carcinogenesis. Frontiers in Cellular and Infection Microbiology, 2016, 6, 34.	3.9	65
16	Chromatibody, a novel non-invasive molecular tool to explore and manipulate chromatin in living cells. Journal of Cell Science, 2016, 129, 2673-83.	2.0	37
17	A new in vitro micronucleus test in living cells associating biological tracers and high-content imaging. Toxicology Letters, 2016, 258, S146.	0.8	0
18	Cell resistance to the Cytolethal Distending Toxin involves an association of DNA repair mechanisms. Scientific Reports, 2016, 6, 36022.	3.3	26

Julien Jv Vignard

#	Article	IF	CITATIONS
19	Chromatibody, a novel non-invasive molecular tool to explore and manipulate chromatin in living cells. Development (Cambridge), 2016, 143, e1.2-e1.2.	2.5	1
20	The Cytolethal Distending Toxin Effects on Mammalian Cells: A DNA Damage Perspective. Cells, 2014, 3, 592-615.	4.1	64
21	lonizing-radiation induced DNA double-strand breaks: A direct and indirect lighting up. Radiotherapy and Oncology, 2013, 108, 362-369.	0.6	230
22	From single-strand breaks to double-strand breaks during S-phase: a new mode of action of the <i>Escherichia coli</i> â€Cytolethal Distending Toxin. Cellular Microbiology, 2013, 15, 1-15.	2.1	74
23	PARP activation regulates the RNA-binding protein NONO in the DNA damage response to DNA double-strand breaks. Nucleic Acids Research, 2012, 40, 10287-10301.	14.5	136
24	SHOC1 and PTD form an XPF–ERCC1-like complex that is required for formation of class I crossovers. Journal of Cell Science, 2011, 124, 2687-2691.	2.0	49
25	Partners apart: Smc6-independent DNA binding activity of Smc5 on single-strand DNA. Cell Cycle, 2011, 10, 1025-1030.	2.6	1
26	Very-Long-Chain Fatty Acids Are Involved in Polar Auxin Transport and Developmental Patterning in <i>Arabidopsis</i> Á. Plant Cell, 2010, 22, 364-375.	6.6	174
27	The Werner syndrome protein affects the expression of genes involved in adipogenesis and inflammation in addition to cell cycle and DNA damage responses. Cell Cycle, 2009, 8, 2080-2092.	2.6	48
28	MRE11–RAD50–NBS1 is a critical regulator of FANCD2 stability and function during DNA double-strand break repair. EMBO Journal, 2009, 28, 2400-2413.	7.8	56
29	AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in <i>Arabidopsis thaliana</i> , but is not required for synapsis. Plant Journal, 2008, 55, 28-39.	5.7	140
30	Outcrossing as an Explanation of the Apparent Unconventional Genetic Behavior of <i>Arabidopsis thaliana hth</i> Mutants. Genetics, 2008, 180, 2295-2297.	2.9	14
31	The Interplay of RecA-related Proteins and the MND1–HOP2 Complex during Meiosis in Arabidopsis thaliana. PLoS Genetics, 2007, 3, e176.	3.5	129
32	The road to crossovers: plants have their say. Trends in Genetics, 2007, 23, 91-99.	6.7	99
33	The <i>Arabidopsis thaliana MND1</i> homologue plays a key role in meiotic homologous pairing, synapsis and recombination. Journal of Cell Science, 2006, 119, 2486-2496.	2.0	103